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Preface

The SMAP Handbook was produced in 2013 as a com-
pendium of information on the project near its time of 
launch. The SMAP Science Definition Team and Project 
personnel wrote this volume together to provide the com-
munity with the essential information on programmatic, 
technological, and scientific aspects of the mission. 

The SMAP Handbook begins with an introduction and 
background that places the project in the context of other 
related missions and the National Research Council (NRC) 
Earth Science Decadal Survey report. The beginning 
section also includes a mission overview that introduces 
and traces the science goals and requirements to the 
measurement approach and to the data systems. The 
technological approaches to the instrument are also 
outlined and unique technical capabilities of the mission 
— such as radio frequency interference detection and mit-
igation — are highlighted.  

The SMAP science products are introduced in three 
sections: 1) Soil Moisture, 2) Value-Added Data Assimila-
tion, and 3) Carbon Cycle. The first science data product 
section defines the main attributes of the SMAP passive 
radiometer–based, the active radar–based, and the 
synergistic active-passive soil moisture products. Each 
of these soil moisture products has varying resolutions 
and different accuracies and other attributes. This section 
of the SMAP Handbook is meant to provide a guide to 
users on how to select a surface moisture product that 
best matches their requirements. The Value-Added Data 
Assimilation section of the SMAP Handbook is a guide 
to a unique science feature of the mission. It includes 
description of data products that merge the SMAP instru-
ment measurements with other observing system data as 
well as models in order to produce science data products 
that are applicable to a much wider range of applications. 
The Carbon Cycle section outlines the application of the 
SMAP measurements to the problem of estimating the 
net terrestrial carbon exchange with the atmosphere 
that remains one of main sources of uncertainty in global 
change.   

Calibration and validation (Cal/Val) is a necessary and 
major component of most Earth-observing missions. The 
SMAP Project has made a concerted effort to perform 

comprehensive pre-launch Cal/Val activities to test the 
retrieval algorithms for its science products. The Project 
also plans coordinated Cal/Val activities with collaborating 
partners during the early post-launch phase. These activi-
ties are outlined in a dedicated section on Cal/Val. 

A rare characteristic of the SMAP Project is its emphasis 
on serving both basic Earth System science as well as 
applications in operational and practice-oriented commu-
nities. The NRC Decadal Survey identified a number of 
possible domains of applications with SMAP science data 
products. These include weather and climate predic-
tion, agricultural and food production decision support 
systems, floods and drought monitoring, environmental 
human health assessments, and national security applica-
tions. The SMAP Project and the SMAP Science Definition 
Team developed formal plans to engage application users 
from a diversity of settings and institutions. A SMAP Early 
Adopter program was launched to facilitate two-way 
exchanges of needs and capabilities between the commu-
nity and the Project. The approach to applied science is 
described in a dedicated section in the SMAP Handbook.

The SMAP Project is advancing rapidly as we approach 
launch and enter the science data acquisition phase. The 
material included in this volume may advance with time 
and updates may be necessary. The SMAP Project has 
taken an open approach to documentation and all major 
Project reports are available on line at the project web-
site (smap.jpl.nasa.gov). The Algorithm Theoretical Basis 
Documents (ATBDs), Ancillary Data reports, Cal/Val Plan, 
and Applications Plan form a comprehensive set of Project 
documents that correspond to the sections of the SMAP 
Handbook. The posting of their most recent versions will 
provide the readership with updates on the contents of 
this volume as they become available.

The final section of the SMAP Handbook is a bibliography 
of papers in peer-reviewed science journals that are either 
about SMAP or produced in response to the development 
of the SMAP mission. This list of pre-launch publications 
is testimony to the broad and deep work that went into 
the design and implementation of the SMAP mission. The 
returns on this effort begin with the launch of the SMAP 
satellite mission in the very near future.

iii





SMAP HANDBOOK 1

1. Introduction and Background

I. Soil Moisture Observations

Soil moisture is a primary state variable of hydrology and 
the water cycle over land. In diverse Earth and environ-
mental science disciplines, this state variable is either an 
initial condition or a boundary condition of relevant hydro-
logic models. Applications such as weather forecasting, 
skillful modeling and forecast of climate variability and 
change, agricultural productivity, water resources man-
agement, drought prediction, flood area mapping, and 
ecosystem health monitoring all require information on the 
status of soil moisture. The outcomes from these appli-
cations all have direct impacts on the global environment 
and human society. Measuring surface soil moisture with 
the required accuracy and resolution (spatial and tem-
poral) is imperative to fulfill the needs of these and other 
applications.

Soil moisture is currently measured at scales ranging from 
point scale (in situ) to satellite footprint scales (~40 km) 
at various temporal resolutions. Measurement networks 
of in situ sensors (such as USDA’s Soil Climate Analysis 
Network (SCAN) or NOAA’s Climate Reference Network 
(CRN) in the continental United States) have potentially 
high soil moisture measurement accuracy but are spatially 
very sparse. On the other hand, satellite-based soil 
moisture measurements using C- and X-band channels 
(6 to 11 GHz or 3 to 5 cm wavelength) from the EOS 
Advanced Multichannel Scanning Radiometer (AMSR-E) 
and Navy’s WindSat instruments are of coarse spatial 
resolution (>50 km) with shallow sensing depth (~1 cm). 
Satellite-based C- and X-band radiometers also have 
low sensitivity to soil moisture for even small amounts of 
vegetation, leading to high soil moisture retrieval errors. 
There is significant heritage from both observations and 
theory showing the relative advantages of lower frequency 
(< 5 GHz) microwave radiometry for mapping soil moisture 
content at the land surface. At lower frequencies the 
atmosphere is less opaque, the intervening vegetation 
biomass is more transparent, and the effective micro-
wave emission is more representative of the soil below 
the surface skin layer. The European Space Agency’s Soil 
Moisture and Ocean Salinity (SMOS) satellite, launched 
in November 2009, is the first wide-swath L-band soil 
moisture mission (operating at 1.4 GHz or ~21 cm wave-
length), and retrieves soil moisture over a much higher 
range of vegetation conditions at a spatial resolution of 
~40 km with a sensing depth of ~5 cm (Kerr et al. 2001). 

Besides satellite radiometers, radar scatterometers have 
also been used to retrieve soil moisture. The European 
Remote Sensing Satellite (ERS) C-band scatterometer 
with resolution of ~50 km has been used to retrieve 
surface soil moisture over sparsely vegetated regions with 
moderate accuracy. Synthetic aperture radars (SARs) pro-
vide observations at much higher spatial resolution than 

radiometers and scatterometers. The heritage of space-
borne L-band SARs includes NASA’s SIR-C and JAXA’s 
JERS and PALSAR instruments. While SARs provide 
high-resolution measurements, they typically operate with 
narrow swaths and do not provide the frequent temporal 
coverage needed for global land hydrology applications. 

Each of these measurement technologies on its own 
can only partially satisfy the criteria of high spatial and 
temporal resolution, wide spatial coverage, optimal 
sensing depth, and desired accuracy in retrieved soil 
moisture over moderate vegetation conditions. Therefore, 
soil moisture estimated from just one of these individual 
technologies is not matched well to the integrated needs 
of hydrometeorology, ecology, water resources manage-
ment, and agricultural applications. 

To meet these needs, NASA’s Soil Moisture Active Passive 
(SMAP) mission uses an L-band radar and an L-band 
radiometer for concurrent, coincident measurements 
integrated as a single observation system. This combi-
nation takes advantage of the relative strengths of both 
active (radar) and passive (radiometer) microwave remote 
sensing for soil moisture mapping. At L-band the micro-
wave emission (brightness temperature) measured by the 
radiometer mostly emanates from the top ~5 cm and is 
clearly sensitive to soil moisture in regions having vegeta-
tion water contents (VWC) up to ~5 kg m–2 averaged over 
the radiometer resolution footprint of ~40 km. The SMAP 
L-band SAR provides backscatter measurements at high-
er resolution (~1 to 3 km) than the coarser resolution radi-
ometer measurement. The accuracy of the radar is limited 
for soil moisture sensing, however, by the higher sensitivity 
of radar to surface roughness and vegetation scattering. 
The significant advantage provided by SMAP is the con-
current L-band radar and radiometer measurement capa-
bility, so that the radar and radiometer measurements can 
be effectively combined to derive soil moisture estimates 
with intermediate accuracy and resolution (~9 km) that 
meet the SMAP science requirements.

II. Earth Science Decadal Survey

The National Research Council’s (NRC) Decadal Survey 
Report, Earth Science and Applications from Space: Na-
tional Imperatives for the Next Decade and Beyond, was 
released in 2007 after a 2-year study commissioned by 
NASA, NOAA, and USGS to provide consensus recom-
mendations to guide the agencies’ space-based Earth 
observation programs in the coming decade (NRC 2007). 
Several factors, including science impacts, societal ben-
efits, and technological readiness of potential missions, 
were considered in the process of ranking the projects 
in four tiers defined by time frames for development and 
launch. SMAP was considered to have high science 
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value, diverse applications impacts, and technological 
readiness. The accuracy, resolution, and global coverage 
of SMAP soil moisture and freeze/thaw measurements 
have applications across several Earth and environmental 
science disciplines including hydrology, climate, carbon 
cycle, and the meteorological, environmental, agricultur-
al, and ecological communities. Change in future water 
resources is a critical societal impact of climate change, 
and scientific understanding of how such change may 
affect water supply and food production is crucial for 
policy makers (Figure 1). Currently, uncertainties in existing 
climate models result in disagreement on whether there 
will be more or less water in any given region compared 
to today — the new data from SMAP should help climate 
models to be brought into agreement on future trends in 
water resource availability. For these reasons, the NRC 
Decadal Survey’s Water Resources Panel gave SMAP the 
highest mission priority within its field of interest. Further-
more, other NRC Decadal Survey panels dealing with 
weather, climate, ecosystems, and human health also 
cited uses for SMAP data. The recognized broad uses of 
soil moisture and freeze/thaw information in Earth system 
science and applications resulted in the recommendation 
that SMAP should be considered a high-priority mission 
in the Decadal Survey. SMAP is one of four missions 
recommended by the NRC for launch in the first-tier 2010 
to 2013 period, and NASA announced in early 2008 that 
SMAP would be one of the first two new Earth science 
missions (along with IceSat-2) to fly in response to the 
NRC Decadal Survey report and follow-on activities.  

Linkage between  
terrestrial water, energy, 
and carbon cycle

Soil freeze/thaw state

Soil moisture
effect on vegetation

Drought early warning 
and decision support

Predictions of  
agricultural  
productivity

More accurate,
longer-term weather 
forecasts

Figure 1. Some of the applications associated with SMAP data products highlighted in the Decadal Survey report.

The Decadal Survey ranking and assignment of the 
missions to the four tiers also considered technological 
readiness as a factor. The SMAP mission concept was 
substantially derived from initial formulation studies for 
the Hydrosphere State (Hydros) mission (Entekhabi et al. 
2004). Hydros was an Earth System Science Pathfinder 
satellite mission proposed to NASA in 2001. It passed 
through a selective approval process to enter the for-
mulation phase but was cancelled in 2005 due to NASA 
budget constraints. The importance to SMAP of the 
early formulation work done by Hydros design studies is 
significant.

III. Project Status

NASA initiated SMAP project formulation in 2008. The 
project went through design studies and formulation in its 
initial years, and successfully completed its Critical Design 
Review in July 2012. During May 2013 the project was 
approved to proceed into System Integration and Test 
(Phase D). The SMAP launch is currently scheduled for 
November 5, 2014. The SMAP mission is being devel-
oped by NASA’s Jet Propulsion Laboratory, which is build-
ing the spacecraft, the instrument (except for the radiom-
eter), and the science processing system. NASA Goddard 
Space Flight Center is providing the L-band radiometer 
and Level 4 science processing. The Canadian Space 
Agency (CSA) is also a mission partner to provide critical 
support to science and calibration/validation (pre- and 
post-launch). SMAP will be launched from Vandenberg Air 
Force Base in California on a Delta II launch vehicle, and 
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Figure 2. The SMAP observatory is a dedicated spacecraft with a rotating 
6-m lightweight deployable mesh reflector. The radar and radiometer 
share a common antenna feed.

will be placed into a polar sun-synchronous 6 AM/6 PM 
orbit with a 685 km altitude. The L-band SAR and radiom-
eter share a 6-m mesh deployable offset-fed reflector 
antenna that rotates at 13 to 14.6 rpm to provide high 
spatial resolution with a 1000 km measurement swath 
that enables global coverage every 2–3 days (Figure 2). 
Major challenges that have been and are being addressed 
by SMAP include: (1) mitigation of L-band radio frequency 
interference to both radiometer and SAR measurements 
from terrestrial and other spaceborne sources; (2) use of 
a mesh reflector antenna for L-band radiometry mea-
surements; (3) dynamics and control of a relatively large 
spinning payload by a comparatively small spacecraft 
bus; (4) cost-effective adaptation of an existing avionics 
architecture to accommodate the unique demands of a 
high-data-volume SAR; and (5) accommodating a relative-
ly late in the design lifecycle selection of launch services 
and vehicle.

References
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2. Mission Overview

I. Science Objectives 

SMAP observations of soil moisture and freeze/thaw state 
from space will allow significantly improved estimates of 
water, energy, and carbon transfers between the land and 
atmosphere. The accuracy of numerical models of the 
atmosphere used in weather prediction and climate pro-
jections is critically dependent on the correct characteri-
zation of these transfers. Soil moisture measurements are 
also directly applicable to flood assessment and drought 
monitoring. SMAP observations can help mitigate these 
natural hazards, resulting in potentially great economic 
and social benefits. SMAP observations of soil moisture 
and freeze/thaw timing will also reduce a major uncertain-
ty in quantifying the global carbon balance by helping to 
resolve an apparent missing carbon sink on land at boreal 
latitudes. 

The science objectives of the SMAP project are captured 
by five specific goals: 

1. Understand processes that link the terrestrial water, 
energy, and carbon cycles,

2. Estimate global water and energy fluxes at the land 
surface,

3. Quantify net carbon flux in boreal landscapes,

4. Enhance weather and climate forecast skill, and

5. Develop improved flood prediction and drought- 
monitoring capability.

Soil moisture controls the partitioning of available en-
ergy into sensible and latent heat fluxes across regions 
where the evaporation regime is, at least intermittently, 
water-limited (as opposed to energy-limited). Since the 
fluxes of sensible and latent heat and moisture at the base 
of the atmosphere influence the evolution of weather, soil 
moisture is often a significant factor in the performance of 
atmospheric models, both in weather and in climate appli-
cations. Given the persistence of soil moisture anomalies, 
the initialized soil moisture can influence land fluxes, and 
thus simulated weather or climate, for days to months into 
the forecast. In this context, the metric that is used to de-
fine soil moisture measurement requirements is influenced 
by the need to capture soil moisture’s control over land–
atmosphere interactions in atmospheric models.

The above goals cover both the science impacts and 
applications goals of the SMAP mission. Applied science 
and applications have been particularly important to the 
development of the project. A SMAP Applications Plan 
has been developed and will be implemented with the 
cooperation of applications partners during the course of 

mission life. For example, the diverse application areas 
directly addressed by SMAP measurements include:

•	 Weather forecasting through initialization of numerical 
weather prediction models

•	 Seasonal climate forecasting through use of soil 
moisture as model initial and boundary conditions 

•	 Agricultural and hydrological drought monitoring 
through mapping of soil moisture deficits

•	 Flood and flashflood forecasting and hazards mitiga-
tion through soil moisture-based flood guidance 

•	 Agricultural productivity and early famine warning 
through assessment of crop water stress

•	 Human health through monitoring and prediction of 
heat stress and conditions for waterborne diseases 

•	 National security through assessment of terrain traffi-
cability and density altitude for air transport 

Chapter 8 provides more detailed explanation of these 
applications and outlines their traceability to SMAP data 
products. The SMAP project strategy for engaging with 
the applications community is also described.

II. Level 1 Requirements 

The SMAP Level 1 Requirements and Mission Success 
Criteria document specifies the SMAP baseline require-
ment for soil moisture and freeze/thaw measurements. 
This document is essentially a contract with the imple-
menting center (Jet Propulsion Laboratory, California 
Institute of Technology, for SMAP) to design, build, deliver, 
and operate a science mission to produce science prod-
ucts with specified requirements. The baseline science 
requirement for SMAP is to provide estimates of soil 
moisture in the top 5 cm of soil with an error of no greater 
than 0.04 cm3 cm–3 volumetric (1-sigma) at 10 km spatial 
resolution and 3-day average intervals over the global land 
area, excluding regions of snow and ice, frozen ground, 
mountainous topography, open water, urban areas, and 
vegetation with water content greater than 5 kg m–2 (aver-
aged over the spatial resolution scale). Figure 3 shows the 
global regions where this requirement is expected to be 
met. Land regions affected by the exclusions are blank on 
the map in Figure 3.

The mission is additionally required to provide estimates 
of surface binary freeze/thaw state in the region north of 
45ºN latitude, which includes the boreal forest zone, with 
a classification accuracy of 80% at 3 km spatial resolution 
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and 2-day average intervals. The baseline science mission 
is required to collect space-based measurements of soil 
moisture and freeze/thaw state for at least three years to 
allow seasonal and interannual variations of soil moisture 
and freeze/thaw to be resolved. Finally, the document 
specifies that the SMAP project shall conduct a calibration 
and validation program to verify that its delivered data 
meet the requirements.

III. Traceability Matrix

In order to meet its science measurement requirements, 
the SMAP approach is to integrate an L-band radar 
and L-band radiometer as a single observation system 
combining the relative strengths of active and passive 
microwave remote sensing for soil moisture mapping. The 
radar and radiometer measurements can be effectively 
combined to derive soil moisture maps that approach 
the accuracy of radiometer-only retrievals, but with a 
resolution intermediate between the radar and radiometer 
resolutions (and that can approach the radar resolution 
under some conditions). The SMAP mission requirements 
include simultaneous measurement of L-band brightness 
temperature and backscatter, at spatial resolutions of 
about 40 km across the entire swath and 3 km over outer 
70% of the swath, respectively. The combined radar/radi-
ometer–based soil moisture product is generated at about 
an intermediate 10 km resolution. Because the effects 
of vegetation and surface roughness are dependent on 
incidence angle, the SMAP mission adopted a conical 
scan, constant incidence angle approach. This reduces 
the retrieval complexity and also facilitates the use of 
time-series retrieval algorithms. To maximize the indepen-
dent information obtainable from the polarized V and H 
brightness temperature channels and avoid large antenna 
footprints at high incidence angles, a single incidence 
angle in the range between 35 and 50 degrees is desired. 
A 40° incidence angle was adopted for SMAP as a 

Figure 3. SMAP is expected to meet its Level 1 Requirements over the 
shaded regions that exclude regions of snow and ice, frozen ground, 
mountainous topography (areas with greater than 300 m standard devi-

suitable angle for both the radiometer and radar designs. 
The wide 1000 km swath that results from this approach 
enables SMAP observations to provide global coverage in 
2–3 days. Table 1 is a summary of the SMAP instrument 
functional requirements derived from the science mea-
surement needs. 

IV. Mission Concept of Operations

A. Mission Synopsis

The goal of the SMAP mission is to establish a satellite 
observatory in a near-polar, sun-synchronous Earth orbit 
to collect a 3-year dataset that will be used to determine 
the moisture content of the upper soil and its frozen or 
thawed state, with global measurements every 3 days. 
This is accomplished using an instrument that combines 
an L-band radar and an L-band radiometer, which share 
a rotating 6-m-aperture reflector antenna that scans a 
wide 1000-km swath as the observatory orbits the Earth. 
The radiometer provides “passive” measurements of the 
microwave emission from the upper soil with a spa-
tial resolution of about 40 km, and is more sensitive to 
near-surface soil moisture and less sensitive to the effects 
of surface roughness and vegetation than the radar. The 
radar makes “active” backscatter measurements of the 
surface, and the ground processing system performs the 
synthetic aperture radar processing to achieve a spatial 
resolution of 3 km across about 70% of the swath in 
its high-resolution mode. Utilizing a combination of the 
active and passive datasets provides greater accuracy 
and spatial resolution in measuring moisture in the upper 
5 cm of soil than is possible with either of the individual 
instruments alone. The radar data also provide information 
on the frozen/thawed state of the soil, which is important 
to understanding the length of the vegetation growing 
season and the contribution of the boreal forests to the 
global carbon balance. 

ation of elevation), open water (greater than 10%), urban areas (greater 
than 50%), and vegetation with water content greater than 5 kg m–2.
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SMAP is a NASA-directed project managed by the Jet 
Propulsion Laboratory, with the Goddard Space Flight 
Center (GSFC) as a mission partner. JPL provides project 
management, the project scientist, systems engineering, 
the radar, the spacecraft, mission operations, and leads 
the science data processing. GSFC provides the radiom-
eter, the deputy project scientist, the Near-Earth Network 
(NEN) tracking services, and supports science data 
processing.

Figure 4 shows the timeline for the 40-month SMAP 
mission based on a launch date of November 5, 2014. 
Four mission phases are defined to simplify description of 
the different periods of activity during the mission. These 
phases are the launch, commissioning, science observa-
tion, and decommissioning. Launch (L) is the time of liftoff 
of the launch vehicle. 

Scientific Measurement Requirements

Soil Moisture:

~±0.04 cm3cm–3 volumetric accuracy in the top 5 cm 

for vegetation water content ≤ 5 kg m–2

Hydrometeorology at ~10 km resolution

Hydroclimatology at ~40 km resolution

Instrument Functional Requirements

L-Band Radiometer (1.41 GHz):

Polarization: V, H, 3rd and 4th Stokes Parameters

Resolution: 40 km

Radiometric Uncertainty*: 1.3 K

L-Band Radar (Tunable from 1.22–1.3 GHz):

Polarization: VV, HH, HV (or VH)

Resolution: 10 km

Relative accuracy*: 0.5 dB (VV and HH)

Constant incidence angle** between 35° and 50°

Freeze/Thaw State:

Capture freeze/thaw state transitions in integrated vegeta-

tion-soil continuum with two-day precision, at the spatial 

scale of landscape variability (~3 km).

L-Band Radar (Tunable from 1.22–1.3 GHz):  

Polarization: HH

Resolution: 3 km

Relative accuracy*: 0.7 dB (1 dB per channel if 2 channels  

are used)

Constant incidence angle** between 35° and 50°

Sample diurnal cycle at consistent time of day (6 AM/6 PM 

equator crossing)

Global, ~3 day (or better) revisit

Boreal, ~2 day (or better) revisit

Swath width: ~1000 km

Minimize Faraday rotation (degradation factor at L-band)

Observation over minimum of three annual cycles Baseline 3-year mission life

* Includes precision and calibration stability   ** Defined without regard to local topographic variation

Table 1. SMAP mission requirements.

B. Launch Phase

The launch phase is the period of transition that takes the 
observatory from the ground, encapsulated in the launch 
vehicle fairing, to its initial free flight in the injection orbit.  
It begins with the start of the launch countdown at  
L – 5 hours. The end of the launch phase is defined at  
L + 24 hours to allow time to establish regular and 
predictable ground station contacts before the start of 
the commissioning activities. After ascent and separation 
from the launch vehicle upper stage, the spacecraft flight 
software controls initiation of the telemetry link, stabili-
zation of any tipoff rates, deployment of the solar array, 
and establishment of a sun-pointed attitude. At this point, 
the ground operations team monitors the health of the 
observatory, collects data to establish the initial orbit, 
commands release of launch restraints on the stowed 
instrument boom and reflector, and commands playback 
of the launch telemetry. 
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C. Commissioning Phase

The commissioning phase, sometimes known as in- 
orbit checkout (IOC), is the period of initial operations 
that includes checkout of the spacecraft subsystems, 
maneuvers to raise the observatory into the science orbit, 
deployment and spin-up of the instrument boom and 
reflector, and checkout of the full observatory. It extends 
from the end of the launch phase until both the ground 
project elements and the spacecraft and instrument sub-
systems are fully functional and have demonstrated the 
required on-orbit performance to begin routine science 
data collection. The Level 1 requirements call for these 
activities be completed by L + 90 days. During this phase, 
up to eight commissioning maneuvers, including two cali-
bration burns, are executed to raise the observatory from 
the initial injection orbit to the 685-km science orbit.

D. Science Observation Phase

The science observation phase is the period of near-con-
tinuous instrument data collection and return, extending 
from the end of the commissioning phase for 3 years. The 
observatory is maintained in the nadir attitude, except for 
brief periods when propulsive maneuvers are required to 
maintain the orbit and for periodic radiometer calibrations 
that require briefly viewing cold space. During the first 
year of science acquisition, a period of calibration and 

validation of the science data products is conducted. This 
includes special field campaigns and intensive in situ data 
acquisitions, data analysis, and performance evaluations 
of the science algorithms and data product quality. These 
activities continue at a lower level for the remainder of the 
science observation phase, but primarily for the purpose 
of monitoring and fine-tuning the quality of the science 
data products.

During science operations, the mission must return an 
average volume of 135 GB per day of science data to be 
delivered to the science data processing facility. SMAP 
does not have an onboard Global Positioning System 
(GPS) receiver and the associated ephemeris knowl-
edge because the large instrument reflector in the zenith 
direction obscures GPS visibility. For this reason, Doppler 
ground tracking with frequent ephemeris table uploads to 
the observatory are used to maintain position and pointing 
accuracy. 

E. Decommissioning Phase

At the end of its useful life, the observatory is maneuvered 
to a lower disposal orbit and decommissioned to a func-
tional state that prevents interference with other missions. 
The observatory is maneuvered to the lower disposal 
orbit to reduce its orbital lifetime and passivated (energy 
sources depleted to the extent allowed by the design) 

2017

Launch
(November 5, 2014)

Mission Phase

Commissioning (up to L + 90 days)

Launch

Decommissioning
(up to 30 days)

2014 2015 2016 2018

Science Observation (36 months)

Cal/Val

Level 1 Level 2/3/4

8-day repeat, sun-synchronous, 685 km altitude, 6 AM descending node equator crossing

EOM
(February 2018)

Calibration/Validation Period

Orbit

Eclipse Season

Calendar Years

Figure 4. SMAP mission timeline.

Injection

Science

Disposal
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to reduce the risk of explosion or fragmentation if struck 
by orbital debris. Up to 30 days have been allocated for 
decommissioning to end the active operations of the 
observatory (EOM, end of mission). The disposal orbit has 
been designed to ensure that the observatory re-enters 
the atmosphere within 15.5 years as is required to meet 
orbital debris probability of collision requirements after the 
observatory is decommissioned. 

F. Science Orbit

SMAP observes the Earth for 3 years from a sun-synchro-
nous, near-circular science orbit with an equator-crossing 
altitude near 685 km and an ascending node at 6 PM 
local mean solar time. At this altitude, a sun-synchronous 
orbit has an inclination of about 98.12º and an orbit period 
of 98.46 minutes. The science orbit altitude has been 
selected to allow near-global coverage of the Earth to be 
obtained in 3 days (44 orbits) with an instrument swath of 
about 1000 km and a ground track that repeats exactly 
in 8 days (117 orbits). This repeat pattern provides even 
coverage of the planet with an ideal longitude spacing 
between ground tracks at the equator of 3.077º (343 km). 
Table 2 gives the mean orbital elements for the science 
orbit.

The terminator orbit was selected to allow soil moisture 
measurements near the morning terminator, where ion-
ospheric effects and land–atmosphere thermal gradi-
ents are minimized. This design also minimizes thermal 
variations on the instrument and simplifies the spacecraft 
design. The 6 PM ascending node was selected so that 
the annual eclipse season (about 12 weeks per year from 
mid May to early August) occurs near the southern part 
of the orbit, and this minimizes thermal effects on freeze/
thaw measurements in the northern hemisphere. The 
maximum eclipse duration is about 18.6 minutes. 

Because of the asymmetric mass distribution of the 
Earth, a purely circular orbit cannot be maintained and 
a frozen-orbit geometry is used to minimize altitude 
variations. A frozen orbit uses a small eccentricity and 
locates the perigee at the northern extreme of the orbit to 
minimize the altitude perturbations. This approach results 

in slightly higher altitudes in the southern hemisphere, but 
altitudes are fairly stable at each latitude. Figure 5 shows 
the geodetic altitude of the observatory versus latitude 
for the 685-km orbit. Geodetic altitude is the altitude at 
a point in the orbit measured normal to the reference el-
lipsoid for mean sea level, which has an equatorial radius 
of 6378.137 km (with a flattening of 1/298.257223563, 
resulting in a polar radius of approximately 6356.752 km). 
This is based on the World Geodetic System (WGS 84). 
The geodetic altitude is highest at the southern extreme of 
the orbit (711.4 km at 81.9ºS) and lowest just north of the 
equator (684.0 km at 13.6ºN). While perigee is the point 
closest to the center of the Earth, the geodetic altitude is 
increased at the northern extreme of the orbit (694.9 km 
at 81.9ºN) because of the Earth flattening. The orbit must 
be maintained such that the geodetic altitude never varies 
by more than 1 km from this profile at any given latitude.

The altitude for the science orbit repeat pattern of 117 
orbits in 8 days (Q8 = 117/8 = 14.625 orbits/day,) is 
selected slightly above the altitude for an exact 3-day 
repeat pattern (Q3 = 44/3 = 14.667 orbits/day) so that 
the ground track walks to the west and fills in the gap 
between consecutive orbits (S = 360º/Q8 = 24.615º or 
2740 km). This design provides an average sampling in-
terval of three days (spatial average) and fills in gaps in the 
high-resolution radar swaths, which have degraded azi-
muthal accuracy over the inner 30% of the swath near the 
ground track. The 8-day repeat pattern allows consistent 
spatial datasets for time histories of the measurements.

Figure 6 shows the science orbit ground track pattern in 
the 2740-km spacing between two consecutive orbits at 
the equator (orbits 1 and 2 at the descending node). Two 
days later, ground tracks for orbits 16 and 31 have re-
duced the maximum spacing at the equator to 1028 km, 
and over 8 days the maximum spacing is reduced to 
343 km. Figure 7 shows the pattern of descending (morn-
ing) and ascending (evening) ground tracks over North 
America over 1 day. The ground track spacing is closer 
away from the equator, and coverage of boreal forest re-
gions northward of 45ºN has an average sampling interval 
of 2 days (spatial average). The specific values of equa-

Orbital Element

Semi-major Axis (a)

Eccentricity (e)

Inclination (i)

Argument of Perigee (w)

Ascending Node (W)

True Anomaly

Mean Element Value

7057.5071 km

0.0011886

98.121621 deg

90.000000 deg

–50.928751 deg

–89.993025 deg

Table 2. Science orbit mean elements.
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tor-crossing longitudes are defined after the science orbit 
is established near the end of the commissioning phase. 

V. Observatory

The observatory is the key implementing element of the 
project in space, and is defined as all hardware elements 
released into orbit from the launch vehicle. The obser-
vatory is made up of the spacecraft bus, which includes 
the engineering subsystems necessary to maintain and 
support operation of the spacecraft and instrument; the 
instrument, which includes the radar and radiometer pro-

cessing electronics and hardware, the reflector antenna 
and its supporting structure, and the deployment and spin 
mechanisms; and a portion of the launch system hard-
ware that remains attached to the spacecraft bus after 
separation from the launch vehicle upper stage.  

A. Configuration

As seen in Figure 8, the observatory is made up of a 
rectangular bus structure, which houses the engineer-
ing subsystems and most radar components, and the 
top-mounted instrument, including the spin mechanism 
and radiometer and the reflector and its deployment 
structure. The three-panel solar array is part of the 
spacecraft bus and is folded against the bus in the launch 
configuration (Figure 9). The instrument hardware above 
the spin plane is designated the spun instrument assem-
bly (SIA).

For science data collection, the observatory is oriented 
to the science orbit reference frame with the –ZSC axis 
pointed to the geodetic nadir and the +XSC axis coplanar 
with the nadir direction and the inertial velocity vector in 
the general direction of orbital motion, so that the +YSC 
axis is generally normal to the orbit plane on the sunward 
side of the orbit. After deployment, the instrument anten-
na spins about the +ZSC axis at a rate of up to 14.6 rpm 
in a right-handed sense (counterclockwise as viewed from 
above) with the antenna reflecting the transmitted and 
received signal 35.5º off the nadir. The instrument spin 

G
eo

de
tic

 H
ei

gh
t (

km
)

Latitude (deg)

715

710

705

700

695

690

685

680
–75 –45 –15 15 45 75

Figure 5. Science orbit geodetic altitude vs. latitude.
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rate between 13.0 to 14.6 rpm for science will be deter-
mined before launch based on margin in the observatory 
pointing control authority to balance the instrument spun 
momentum.  

The observatory transitions through three main configura-
tions, as shown in Figure 9:

Launch: For launch, the solar array and reflector boom 
assembly (RBA) are folded against the spacecraft bus to 
fit within the launch vehicle fairing.  

Partially Deployed: After separation from the Delta II 
second stage, the launch behavior deploys the solar 
array and the observatory remains in this configuration for 
about four weeks. During this period the initial engineering 
checkout is accomplished and the first commissioning 
maneuvers are executed to reach the science orbit.

Fully Deployed: Beginning about 30 days after launch, 
the instrument reflector boom assembly is deployed in 
two steps and then spun up in two steps to a rate of up 
to 14.6 rpm used for science data collection. (Note that 
there are brief transition periods of a few days, with in-
termediate configurations, between these steps of boom 
deployment, reflector deployment, and spin-up.)  

VI. Mission System

The mission system consists of the people, facilities, 
hardware, networks, software, and processes necessary 
to operate the observatory after launch and to acquire 
and process the returned data into scientific products. 
For operations, the mission system is composed of three 
functional elements: the Mission Operations System 
(MOS), the Ground Data System (GDS), and the Science 
Data System (SDS). Before launch, the mission system in-
cludes the mission and navigation design element, which 
defines the orbit design, the launch strategy, the naviga-
tion approach, and the mission plan.

A. Mission Operations System (MOS)

The mission operations system consists of the people 
and processes necessary to operate the observatory 
after launch and to acquire the instrument and engineer-
ing data. Located at the JPL mission operations center 
(MOC), the MOS is organized into two teams. The flight 
operations team (FOT) is responsible for planning and 
executing all the processes necessary to operate the 
observatory, including the following: 

Figure 7. One-day ground track pattern over North America  
(Orbit 16 begins about 24.615 hours after Orbit 1).

Orbit 2

Orbit 9

Orbit 16 Orbit 1

Orbit 8

Orbit 15

Orbit 7
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Orbit 6

Orbit 13



SMAP HANDBOOK12

•	 Plan, build, and execute spacecraft activities (launch, 
commissioning, maneuvers, calibrations, routine 
operations, anomaly responses)

•	 Monitor and operate observatory systems, subsys-
tems, and instruments

•	 Manage onboard data products (file deletion)

•	 Schedule Near-Earth Network (NEN) and Space 
Network (SN) coverage and generate background 
sequences to manage communications

•	 Perform flight controller (ACE) functions (command, 
real time station interface) as needed [Passes are 
unattended during routine operations]

•	 Perform navigation operations (orbit determination, 
maneuvers)

•	 Perform time correlation (automated)

•	 Operate and maintain system testbeds

The mission data operations team (MDOT) is responsible 
for operating and maintaining the GDS and SDS commu-
nications networks and hardware as follows:

•	 Perform data accounting

•	 Operate GDS

•	 Operate SDS

•	 Maintain NEN/EDOS interface

•	 Maintain/upgrade data systems software

•	 Maintain hardware, communications net and facility

B. Ground Data System (GDS)

The ground data system consists of the facilities, commu-
nications networks, hardware, and software used by the 
MOS. Figure 10 shows the four main facilities that support 
the SMAP mission and the functions executed at each 
facility. Figure 11 illustrates the SMAP communications 
paths. Operations are centered at the Mission Opera-
tions Center at JPL (MOC). Communications with the 
observatory are handled through the ground and space 
assets of the NEN and SN. Scheduling and pass report-
ing for the NEN and SN assets are handled through the 
Data Services Management Center (DSMC) at the White 
Sands Complex (WSC), where the primary Tracking and 
Data Relay Satellite (TDRS) ground terminals are located. 
Science telemetry from the NEN stations flows to the EOS 
Data and Operations System (EDOS) Level Zero Process-
ing Facility (LZPF) at GSFC, which formats the data into 
files and passes the radar and radiometer data to the 
Science Data System. Engineering data from the NEN 
and SN stations flows to the MOC at JPL, which gener-
ates displays and other products to support both mission 
operations and science processing.

The primary path for commanding the observatory and 
returning science and engineering data is through three 
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northern-hemisphere tracking stations and one south-
ern-hemisphere station in Antarctica. Data return at the 
northern-hemisphere stations is via 11.3-m antennas 
located at Wallops, Virginia (WGS), Fairbanks, Alaska 
(ASF), and Svalbard Island, Norway (SGS). Data return at 
the southern-hemisphere station is via the 10-m anten-
na (MGS) at McMurdo Station, Antarctica. Table 3 gives 
characteristics of the four stations and average contact 
statistics from the science orbit. Because SMAP is in a 
near-polar orbit, the higher latitude stations have more 
frequent contact opportunities. 

C. Science Data System (SDS)

The science data system provides the hardware and 
software to process the radar and radiometer instrument 
data and the supporting engineering data into science 
data products for the science team, applications users, 
and the public. Files of radar and radiometer data derived 
from the downlink telemetry are delivered from the GSFC 
EDOS/LZPF, and engineering ancillary data, including 
timing, pointing, and ephemeris information, are delivered 
from the MOC. Algorithms developed before launch are 
used to process the data into science data products. The 
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SDS has data latency requirements on delivering data 
products to the science team and to operational users: 
Level 1 products (within 12 hours of acquisition), Level 2 
(within 24 hours), Level 3 (within 50 hours), and Level 4 
(within 7 days for soil moisture and 14 days for carbon 
net ecosystem exchange). Data latency is defined here 
as from the time of data acquisition by the observatory 
to the time data products are available to the public at 
the NASA DAACs. SMAP data will be archived by the 
NASA-designated Earth science data centers at the Na-
tional Snow and Ice Data Center and the Alaska Satellite 
Facility. During the first year of routine science collection 
(which comprises the formal mission cal/val period), all 
SMAP data product algorithms are updated as needed by 
comparing SMAP estimates of soil moisture and freeze/
thaw state with data collected on the ground at specific 
cal/val sites.

The key SDS operations functions are:

•	 Ingest instrument and ancillary data and generate 
higher-level data products. The range of higher-level 
products is Level 1A (L1A) through Level 4 (L4). The 
definition of what the SDS produces is dictated by 
the science requirements. 

•	 Support calibration and validation of science data 
products

•	 Provide science data accounting/auditing

•	 Provide data access to Project, Science, and Flight 
Engineering Teams

•	 Manage long-term data storage (products, metadata, 
test data, etc.); prepare and make available validated 
products to a public archive data center

•	 Maintain the SDS production and testbed systems 

The SDS implementation organizations include:

•	 SMAP Science—responsible for the L1 radiometer 
and L2-L4 algorithms and science software

•	 JPL SDS—responsible for L1 radar algorithms and 
L1-L3 production code and product generation

•	 GSFC Global Modeling & Assimilation Office 
(GMAO)—responsible for Level 4 soil moisture 
and Level 4 carbon production code and product 
generation

The SDS architecture and data flow among different enti-
ties are summarized in Figure 12.

VII. Data Products 

The SMAP radiometer is capable of acquiring H and V 
polarization measurements as well as the third and fourth 
Stokes parameters. In addition, it has the capability to 
measure in sixteen discrete spectral subbands (each 
1.5 MHz wide) within the 24 MHz fullband centered at 
1.4135 GHz as an RFI mitigation approach. The subband 
data volume can be substantial. The radar measurements 
(HH, VV, and HV polarizations) have even larger volumes 
during each orbit. Even though the instruments are capa-
ble of acquiring the data, not all of the data can be trans-
ferred to the ground because of limitations in downlink 
rates. As a result, masks are applied to limit the portion 
of the data that can fit the downlink bandwidth. The selec-
tion of the mask is based on the science requirements. 

Figure 13 shows the “Global Land” mask that is applied to 
the radar and radiometer instruments for downlinking the 
measurements needed to meet the Level 1 soil moisture 
requirements. Low-resolution radar measurements and 
fullband radiometer measurements (integrated over all the 
spectral subbands) are transmitted to the ground for the 

Ground Station

Svalbard (SGS) Norway

Fairbanks (ASF) Alaska

Wallops (WGS) Virginia

McMurdo (MGS) Antarctica

Average # of  
Contacts per day*

Table 3. Ground station characteristics (X-band).

Antenna Latitude Average Coverage
Minutes/day*

11.3 m

11.3 m

11.3 m

10.0 m

78.2ºN

64.9ºN

37.9ºN

77.8ºS

10.3

6.8

3.3

10.4

88.3

53.7

25.8

90.7

*  These are maximum capabilities if all available passes with a duration of  
   at least 5 minutes above 10º elevation are utilized. Horizon terrain  
   masks not considered.
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Figure 11. SMAP communications paths.

fore and the aft scan, globally (land and ocean), and for 
both the AM and PM overpasses (additional information 
on the SMAP measurement approach will be given in the 
next chapter on Instrument Design and L1 Data Prod-
ucts). Over the Global Land region, subband (full spectral 
resolution) radiometer measurements (fore and aft scan) 
are transmitted to the ground network during both AM 
and PM overpasses. Thus, for global land areas, both 
fullband and subband radiometer data are available for 
both AM and PM overpasses — for global oceans, only 
fullband radiometer data will be downlinked to the ground.

The high-resolution radar data (fore and aft scan) are 
sent to the ground over all global land areas for the AM 
overpass and only over land areas north of 45ºN latitude 
for the PM overpass. Figure 14 shows the regions where 
the high-resolution radar data (fore and aft) are acquired 

and transmitted to the ground for the PM overpass. Over 
regions above 45ºN, both AM and PM high-resolution ra-
dar data are available to meet the landscape freeze/thaw 
detection science requirement.

High-resolution radar data are also acquired (fore-look, 
AM overpass only) across one swath width (~1000 km) 
for coastal waters along continents (except Antarctica) 
and major islands. Figure 15 shows the extent of the 
high-resolution radar data downlink over oceans and 
open waters. These data are used for geolocation as well 
as potentially useful applications for the ocean and sea ice 
science and applications communities.

The SMAP baseline data products are listed in Table 4.
Level 1B and 1C data products are calibrated and 
geolocated instrument measurements of surface radar 
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backscatter cross-section and brightness temperatures. 
Level 2 products are geophysical retrievals of soil mois-
ture on a fixed Earth grid based on Level 1 products and 
ancillary information; the Level 2 products are output on 
a half-orbit basis. Level 3 products are daily composites 
of Level 2 surface soil moisture and freeze/thaw state 
data. Level 4 products are model-derived value-added 
data products of surface and root zone soil moisture and 
carbon net ecosystem exchange that support key SMAP 
applications and more directly address the driving science 
questions. 

In total, the SMAP mission will generate 15 distributable 
data products representing four levels of data process-
ing. Level 1 products contain instrument-related data 
and appear in granules that are based on half orbits of 
the SMAP satellite. The northernmost and southernmost 
orbit locations demarcate half orbit boundaries. Level 2 
products contain output from geophysical retrievals that 
are based on instrument data and also appear in half orbit 
granules. Level 3 products are daily global composites of 
the Level 2 geophysical retrievals for an entire UTC day. 
Level 4 products contain output from geophysical models 
utilizing SMAP data.

There are three L2 soil moisture products resulting from 
the radar and radiometer data streams. L2_SM_A is a 
high-resolution research-quality soil moisture product that 
is mostly based on the radar measurements and is posted 
at 3 km. L2_SM_P is soil moisture derived from the 
radiometer brightness temperature measurements and is 
posted at 36 km. L2_SM_AP is a combination active and 
passive (radar and radiometer) product that produces soil 
moisture estimates at 9 km resolution.

The radar-only soil moisture (L2_SM_A) is a fine-resolution 
(3 km) soil moisture estimate derived from high-resolution 
radar backscatter data (L1C_S0_HiRes). Although the 
L2_SM_A data product is unlikely to be as accurate as 
the L2_SM_P and L2_SM_AP products, it will produce 
useful soil moisture information at higher spatial resolution.   
L2_SM_A produces radar backscatter values aggregated 
to 3 km during the early stages of its processing. This 
dataset, along with water body and freeze/thaw flags gen-
erated from the radar data, is made available during data 
processing to the other products as input.

The combined radar/radiometer soil moisture product L2_
SM_AP is posted on a 9-km Equal-Area Scalable Earth–2 
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SDS
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Radiometer
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System
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EDOS
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Distributed
Users

NSIDC
DAAC
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L4:
L4_SM
L4_C

All Products

Radar Products

Figure 12. SMAP Science Data System architecture and data flows.
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(EASE2) grid (Brodzik et al. 2012) that is nested consis-
tently with the 36 km and 3 km grids used by other SMAP 
products. It uses both the high-resolution radar backscat-
ter gridded at 3 km and the radiometer brightness tem-
perature data gridded at 36 km. L2_SM_AP combines the 
two data streams to produce disaggregated brightness 
temperatures posted at 9 km. The retrieval algorithm used 
to estimate soil moisture from the disaggregated 9 km 
brightness temperatures uses the same approach as the 
L2_SM_P radiometer-only soil moisture product. The an-
cillary data inputs and implementation of the L2_SM_AP 
may differ from those used by L2_SM_P because of the 
spatial resolution differences at 9 and 36 km.

L3_FT_A, the only SMAP freeze/thaw product, consists 
of a daily composite of landscape freeze/thaw state for 
the boreal land region north of 45ºN latitude output on a 
polar EASE2 grid at 3 km. It is derived from high-resolu-
tion radar data (L1C_S0_HiRes half-orbits) using both the 
AM (descending) and PM (ascending) overpasses. The 

L1C_S0_HiRes AM data will also be utilized to generate 
a freeze/thaw binary state flag for use in the L2/3_SM 
product algorithms. 

SMAP measurements provide direct sensing of soil 
moisture in the top 5 cm of the soil column. However, 
several of the key applications targeted by SMAP require 
knowledge of root zone soil moisture in the top 1 m of the 
soil column, which is not directly measured by SMAP. As 
part of its baseline mission, the SMAP project will produce 
model-derived value-added Level 4 data products to fill 
this gap and provide estimates of root zone soil moisture 
that are informed by and consistent with SMAP surface 
observations. Such estimates are obtained by merging 
SMAP observations with estimates from a land surface 
model in a data assimilation system. The land surface 
model component of the assimilation system is driven 
with observations-based meteorological forcing data, 
including precipitation, which is the most important driver 
for soil moisture. The model also encapsulates knowledge 
of key land surface processes, including the vertical trans-

Product

L1A_Radiometer

L1A_Radar

L1B_TB

L1B_S0_LoRes

L1C_S0_HiRes

L1C_TB

L2_SM_A

L2_SM_P*

L2_SM_AP*

L3_FT_A*

L3_SM_A

L3_SM_P*

L3_SM_AP*

L4_SM

L4_C

Gridding 
(Resolution)

Table 4. SMAP data products.

Description Latency**

Radiometer Data in Time-Order

Radar Data in Time-Order

Radiometer TB in Time-Order

Low-Resolution Radar so in Time-Order

High-Resolution Radar so in Half-Orbits

Radiometer TB in Half-Orbits

Soil Moisture (Radar)

Soil Moisture (Radiometer)

Soil Moisture (Radar + Radiometer)

Freeze/Thaw State (Radar)

Soil Moisture (Radar)

Soil Moisture (Radiometer)

Soil Moisture (Radar + Radiometer)

Soil Moisture (Surface and Roof Zone)

Carbon Net Ecosystem Exchange (NEE)

Instrument 
Data

Science 
Data 
(Half-Orbit)

Science 
Data 
(Daily 
Composite)

Science 
Value Added

—

—

(36x47 km)

(5x30 km)

1 km (1–3 km)#

36 km

3 km

36 km

9 km

3 km

3 km

36 km

9 km

9 km

9 km

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

24 Hrs

24 Hrs

24 Hrs

50 Hrs

50 Hrs

50 Hrs

50 Hrs

7 days

14 days

#  Over outer 70% of swath.
** The SMAP Project will make a best effort to reduce the data latencies beyond those shown in this table.
*   Product directly addresses the mission L1 science requirements. 
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fer of soil moisture between the surface and root zone 
reservoirs. Finally, the model interpolates and extrapolates 
SMAP observations in time and in space, producing 
3-hourly estimates of soil moisture at 9 km resolution. The 
SMAP L4_SM product thus provides a comprehensive 
and consistent picture of land surface hydrological condi-
tions based on SMAP observations and complementary 
information from a variety of sources. 

The L4_C algorithms utilize daily soil moisture and 
temperature inputs with ancillary land cover classification 
and vegetation gross primary productivity (GPP) inputs to 
compute the net ecosystem exchange (NEE) of carbon 
dioxide with the atmosphere over global vegetated land 
areas (with an emphasis on boreal areas north of 45ºN lat-
itude). Carbon NEE is a fundamental measure of the bal-
ance between carbon uptake by vegetation and carbon 
losses through autotrophic and heterotrophic respiration.

Table 4 specifies several important characteristics of the 
SMAP baseline data products. Among these are:

•	 The product short name — these provide a short-
hand method to differentiate among the products

•	 A very brief product description — additional SMAP 
project documents provide complete specifications of 
the format and the content of each data product; the 

SMAP DAACs will make these documents available 
to the user community

•	 Product spatial resolution or grid posting — the 
resolution of some Level 1 products is based on the 
size of the instantaneous field of view (IFOV) of the 
radar or radiometer instrument, while the resolution 
of higher level products is based on the selected grid 
spacing

•	 Product latency to the user community — latency 
measures the time between the acquisition of the first 
element in the data product and the time the product 
is available for use at one of the SMAP Data Centers. 
Although the latencies listed in Table 4 are being 
used by the project to construct the data processing 
system, the SMAP project will do its best to deliver 
products sooner, whenever possible.  

A. SMAP Data Product File Format

All SMAP standard products appear in the Hierarchical 
Data Format version 5 (HDF5). HDF5 is a general purpose 
file format and programming library for storing scientific 
data. HDF5 functions flexibly over a wide range of com-
puter hardware, operating systems, and software tools. 
Thus, users can read HDF5 files on multiple platforms 
regardless of the platform or data architecture. HDF5 files 

Figure 13. The SMAP radiometer data will include the four Stokes 
parameters in all spectral subbands over the 360 degrees of the antenna 
scan (fore and aft looks) for the AM and PM portion of the orbit over the 
“Global Land” region. SMAP high-resolution data will be collected over 

the Global Land region over the AM portion of the orbit. Low-resolution 
radar data and radiometer without the spectral resolution will be collect-
ed globally over land and oceans during both the AM and PM overpasses.
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are equally accessible to routines written in a large number 
of standard software languages, including Fortran, C, C++ 
and Java, and popular software packages employed by 
the scientific community, such as IDL and Matlab, include 
well established and easy to use HDF5 interfaces. Users 
can reference the HDF Group website at http://www.hdf-
group.org to download HDF software and documentation.

B. SMAP Data Product Organization

A critical component of data product design is the orga-
nization of the data elements within the product. To ease 
user interfaces, the SMAP Science Data System team 
devised a common data organization across all mission 
products. HDF5 provides a means to divide the product 
content into distinct groups. All products contain at least 
two HDF5 groups. One group, named Metadata, contains 
the file level metadata. The other HDF5 groups in a SMAP 
data product contain sets of HDF5 Datasets. Each HDF5 

Dataset contains a data array. All of the arrays in the same 
group share a common theme and a common set of 
dimensions. Within any given group, the common array 
dimensions appear in the same order and have the same 
length. Thus, if two elements in different arrays in the 
same group have identical dimension indices, those array 
elements correspond to the same pixel. This standard 
organizational pattern enables product users to estab-
lish a clear correspondence among elements in SMAP 
product arrays. For example, all of the arrays in the SMAP 
L2_SM_AP product appear in a group named “Soil Mois-
ture Retrieval Data.” All of the HDF5 Datasets in the “Soil 
Moisture Retrieval Data” group contain two-dimensional 
arrays. The slower moving index in each array represents 
the pixel latitude. The faster-moving index in each array 
represents the pixel longitude. Thus, given longitude index 
m and latitude index n, a user of column major software 
such as Fortran, MATLAB and IDL can conclude that the 
disaggregated brightness temperatures in array elements 

Figure 14. The SMAP high-resolution radar data will be collected during the  
PM overpasses across land regions above 45N in order to detect freeze/thaw transitions. 

Figure 15. The SMAP high-resolution radar data will be collected one 
swath width across coastlines of continents and major islands  

for geolocation and possible use in coastal applications. In the Arctic, the 
Level 1 radar products may also have sea ice detection applications. 
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tb_v_disaggregated (m,n) and tb_h_disaggregated (m,n) 
were used to retrieve the soil moisture stored in array 
element soil_moisture (m,n). Likewise, a user of row major 
software such as C, C++ or Python can conclude that the 
disaggregated brightness temperatures in array elements 
tb_v_disaggregated(n,m) and tb_h_disaggregated (n,m) 
were used to retrieve the soil moisture stored in array 
element soil_moisture (n,m).  

As previously mentioned, HDF5 usage adopts to the lan-
guage the user employs to access the data. Thus, users 
can utilize row-major or column-major representation of 
arrays in their favorite software language and achieve 
equivalent results. To avoid confusion about array index 
order, SMAP documentation typically references “faster 
moving” and “slower moving” indices. The “faster or fast-
est moving” index is the one that represents contiguous 
storage for sequential index values. In other words, given 
two array elements with all indices equal except for those 
in the “fastest moving” position, if the fastest moving 
indices are consecutive numbers, one can conclude that 
those two elements are stored contiguously in memory 
and on disk.

C. The EASE2 Grid

All of the SMAP Level 2, Level 3, and Level 4 products, 
as well as the Radiometer Level 1C product, employ 
the EASE2 grid (Brodzik et al. 2012) developed at the 
National Snow and Ice Data Center (NSIDC) to specify 
the location of data pixels. The flexible formulation of the 
EASE2 grid makes it ideal for SMAP use. A simple adjust-
ment of just one scaling parameter enables generation 
of a family of multi-resolution grids that “nest” within one 
another. This nesting can be designed so that smaller grid 
cells are perfectly tessellated to form larger grid cells. Fig-
ure 16 displays the perfect nesting for 3-km, 9-km, and 
36-km SMAP grids, while Figure 17 provides an example 
of SMAP NDVI ancillary data posted at these three grid 
resolutions.

The perfect nesting of EASE2 grids enables the SMAP 
team to provide data products with a convenient common 
projection for both the higher resolution radar observa-
tions and the lower resolution radiometer observations. 
EASE2 also provides the capability to generate cylindrical 
global grids as well as Northern and Southern Hemi-
sphere polar grids.

The Level 1B and Level 1C radar products do not employ 
the EASE2 grids for data organization. Instead, these 
products contain an array of floating-point indices that 
specify either the center of the instrument IFOV or the 
center of the cells in an instrument swath grid. These 
floating point indices also reference a 1-km EASE2 grid 
that nests perfectly into the 3-km, 9-km and 36-km 
grids used in the higher-level products. This information 

9 km

3 km

36 km

Figure 16. Nesting of SMAP 3-km, 9-km and 36-km EASE2 grids as 
employed in SMAP data products.

enables users to easily translate Level 1 radar data onto 
the EASE2 grids employed in the higher-level SMAP data 
products.

D. Quality and Descriptive Information in SMAP 
Data Products

SMAP data products include content that enables users 
to assess data quality as well as gain a better under-
standing of geophysical conditions. This descriptive 
content can be classed into three identifiable categories:

•	 Auxiliary data elements that provide measures that 
enhance assessment of product content – these 
include statistical measures of uncertainty as well 
as physical measures that either impact or validate 
product results

•	 Metadata that provide an overall description of the 
entire product content

•	 Bit flags that provide quality assessments of indi-
vidual pixels as well as binary indicators of existing 
conditions when and where the data were acquired

E. Auxiliary Data Elements

Most SMAP products include many auxiliary arrays. Each 
of these arrays appears in HDF5 Datasets. Elements 
in these auxiliary arrays correspond directly with the 
elements in the arrays that specify major product output, 
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such as brightness temperature or normalized backscat-
ter in Level 1, or retrieved soil moisture in Level 2. Many 
of these auxiliary arrays provide a measure of noise in the 
major product output. Thus, the radiometer L1B product 
contains a noise equivalent delta temperature (NEDT) that 
users can employ to assess the quality of each brightness 
temperature measure. Likewise, the Level 1B and Level 
1C radar products include a Kpc, which contains the nor-
malized standard deviation of the backscatter measure. 
Based on algorithmic functions, each of the Level 2 prod-
ucts incorporate different uncertainty measures, which 
provide users with a sense of measurement noisiness for 
each individual pixel. Additional auxiliary arrays provide 
information about geophysical conditions that might 
impact the quality and/or the viability of data within each 
pixel. Examples might include the boresight angle or the 
Faraday rotation angle in the Level 1 data products, as 
well as a representative surface temperature or vegetation 
information from ancillary data sources in the Level 2 and 
Level 3 data products.

F. SMAP Metadata

Metadata are data that describe data. SMAP products 
contain two distinct types of metadata:  

•	 File level metadata — these metadata describe the 
overall content of the data product and appear in an 
HDF5 group entitled “Metadata”

•	 Local metadata — these metadata describe individ-
ual arrays in the product and are provided by HDF5 
Attributes associated with each array 

G. File-Level Metadata in SMAP Data Products

SMAP file-level metadata conform to the ISO 19115 (ISO 
2003) and ISO 19115-2 (ISO 2007a) standards. SMAP 
is the first NASA Earth science mission to employ these 
standards. The ISO standard provides an overarching 
model for metadata organization which delineates the 
metadata into a set of standard groups that address a 
common topic. Each of these metadata groups appears 
in a specific class. The major ISO metadata classes in 
SMAP products include:

•	 MI_Metadata — defines basic information about the 
metadata

•	 MD_DataIdentification — contains descriptive infor-
mation about the output data product

•	 DQ_Quality — provides overall quality information 
about the entire data product

•	 LI_Lineage — covers all input data employed to 
generate the output data product. LI_Lineage incor-
porates listings of all input files as well as informa-
tion about the software processing and algorithmic 
approach.

•	 EX_Extent — describes the spatial and temporal 
coverage of the data product

•	 MI_AcquisitionInformation — contains informa-
tion about the flight platform and measurement 
instruments

The ISO standards define specific attributes within each 
of these classes. Each attribute provides a segment of the 

June 15 NDVI Climatology (36 km)

Figure 17. Example of ancillary Normalized Difference Vegetation Index (NDVI)  
climatology data displayed on the SMAP 36-km, 9-km, and 3-km grids, respectively.

June 15 NDVI Climatology (9 km) June 15 NDVI Climatology (3 km)

0.30 0.45 0.60 0.75 0.30 0.45 0.60 0.75 0.30 0.45 0.60 0.75



SMAP HANDBOOK22

necessary detail required to fully describe the entire data 
product. The ISO 19139 (ISO 2007b) standard provides 
a common XML serialization for representation of ISO 
model metadata. The combination of the 19115 and 
19139 standards ensures that users of disparate Earth 
data products generated by any agency or organization 
can locate the metadata that they seek based on model 
organization and can read those metadata with reusable 
software tools.

H. Local Metadata in SMAP Data Products

SMAP standards incorporate additional metadata that 
describe each array within the HDF5 file. Each of these 
metadata elements appear in an HDF5 Attribute that is 
directly associated with the HDF5 Dataset that stores the 
array. Wherever possible, these HDF5 Attributes employ 
names that conform to the Climate and Forecast (CF) 
conventions. The Wikipedia page at http://en.wikipedia.
org/wiki/Climate_and_Forecast_Metadata_Conventions 
provides an overview of the content and development of 
the CF conventions. Table 5 lists the CF names for the 
HDF5 Attributes that SMAP products typically employ. 
The table also indicates which of these local metadata 
elements are mandatory for all arrays, and which are 
optional.

I. Bit Flags in SMAP Data Products

Bit flags provide a compact means to specify descriptive 
and quality information for individual pixels represented in 
the data product. Bit flags serve at least three important 
data processing functions. These include:

•	 Specification of data quality and ambient informa-
tion — product users can inspect these flags to 
determine which pixels are applicable and/or have 
appropriate quality for use in their research

•	 Provision of pre-conditions for use in subsequent 
data generation processes — for instance, the SMAP 
Level 2 executables that retrieve soil moisture will not 
employ Level 1 pixels that are flagged with uncorrect-
ed radio frequency interference (RFI). These same 
Level 2 executables will not attempt to retrieve soil 
moisture for pixels that are mostly or entirely over 
open water, since such an effort makes no sense, 
even if the quality of the pixel is deemed good.

•	 Compilation of the overall quality of a granule — at 
the completion of processing, SMAP executables 
collect the content of bit flags to perform statistical 
analyses of the overall data granule 

In general, bit flags serve two major purposes:

•	 Quality indicators — indicate whether a particular 
quality characteristic is good or acceptable   

•	 State indicators — indicate other states or condi-
tions about each pixel that may be important to the 
product user, but not reflective of quality. A SMAP 
example of a state indicator might specify whether 
a particular instrument footprint was acquired to the 
fore or to the aft of the spacecraft. Another might 
indicate whether the results are based on high-reso-
lution or low-resolution instrument data.

Bit flags in all SMAP data products conform to the follow-
ing convention:

•	 SMAP products separate quality indicator bits from 
state indicator bits. Quality indicator bits with state 
indicator bits do not appear in the same bit flag vari-
ables in SMAP data products. 

•	 Bit flags that contain quality information and bit flags 
that list conditions that can be classed as favorable 
or unfavorable adhere to the following convention:

	 •					Bits	that	indicate	good	quality	or	favor-	 	
               able conditions contain zeros.

	 •					Bits	that	indicate	poor	or	unacceptable		 	
                     quality or unfavorable conditions  
        contain ones.

•	 SMAP executables initialize bits at the beginning of 
each process. Software always initializes defined bits 
with a value of one and initializes undefined bits with 
a value of zero. Processing executables therefore 
need to actively clear all defined bits when good 
quality is identified or when acceptable conditions 
are realized. Thus, when examining flags that contain 
quality information or ambient condition information 
that can be qualified, users can choose whether they 
wish to parse bit flag variable contents. If the entire 
flag is zero, users can rest assured that no adverse 
conditions were detected.

VIII. Data Archive

The Earth Observing System Data and Information 
System (EOSDIS) is a key core capability in NASA’s Earth 
Science Data Systems Program. It provides end-to-end 
capabilities for managing NASA’s Earth science data from 
various sources — satellites, aircraft, field measurements 
and various other programs. Included within the capa-
bilities of EOSDIS are the EOSDIS Science Operations, 
which are managed by the Earth Science Data and 
Information System (ESDIS) Project. These capabilities 
include generation of higher level (Level 1–4) science data 
products for EOS missions and archiving and distribution 
of data products from EOS and other satellite missions, 
as well as data from aircraft and field measurement cam-
paigns. The EOSDIS science operations are performed 
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within a distributed system of many interconnected nodes 
(Science Investigator-led Processing Systems and dis-
tributed, discipline-specific, Earth Science Data Centers) 
with specific responsibilities for production, archiving and 
distribution of Earth science data products (NASA 2013).

The EOSDIS Data Centers serve a large and diverse user 
community by providing capabilities to search and access 
science data products and specialized services. Twelve 
discipline-specific EOSDIS Data Centers are collocated 
with science and academic institutes around the country; 
eight of these are referred to as Distributed Active Archive 
Centers (DAACs). Data Center holdings can be searched 
from the Reverb search and order client (http://reverb.
echo.nasa.gov) powered by the EOS Clearing House 
(ECHO).

The ESDIS Project, through its development, manage-
ment, and operation of the EOSDIS, oversees the transfer 
of SMAP mission data to its Data Centers for archiving 
and distribution to the Earth science user community. 
The Alaska Satellite Facility (ASF) DAAC, specializing in 
SAR data, and the National Snow and Ice Data Center 
(NSIDC) DAAC, specializing in cryospheric science and 

land microwave data, were selected as the co-managing 
Data Centers for SMAP data. ASF and NSIDC will collab-
oratively develop a data system strategy to provide seam-
less discovery and access of all SMAP and SMAP-related 
data. 

A. SMAP Data Management at the ASF DAAC 

The ASF of the Geophysical Institute operates the SAR 
Data Center for NASA at the University of Alaska in Fair-
banks (UAF). For more than 20 years, ASF has worked in 
conjunction with the SAR research community and scien-
tists across the globe providing near-real-time and archive 
data from several key Earth-observing satellites. In sup-
port of this user community, ASF offers interactive web 
resources for data search and download, creates custom 
software tools for data interpretation and analysis and 
provides public outreach activities (http://www.asf.alaska.
edu). ASF’s DAAC is one of 12 Data Centers supported 
by NASA and specializes in the processing, archiving, and 
distribution of SAR data to the global research commu-
nity. In the past 2 years, ASF DAAC has moved from a 
process-on-demand to a download-on-demand data 
system that provides direct access to over 1 PB of SAR 

CF Compliant 
Attribute Name

Units

valid_max

valid_min

_FillValue

long_name

coordinates

flag_values

flag_masks

flag_meanings

Mandatory?

Table 5. SMAP-specific local attributes.

Description

Units of measure  

The largest valid value for any element in the associated array. The data 
type in valid_max matches the type of the associated array.  

The smallest valid value for any element in the associated array. The 
data type in valid_min matches the type of the associated array.  

Specification of the value that will appear in the array when an element 
is missing or undefined. The data type of _FillValue matches the type of 
the associated array.  

A descriptive name that clearly describes the content of the associated 
array.

Identifies auxiliary coordinate variables in the data product. Coordinate 
variables are arrays with matching shape that enable users to correlate 
data to spatial data or to temporal data.

Provides a list of flag values that appear in bit flag variables. Only  
appears with bit flag variables.

Provides a list of bit fields that express Boolean or enumerated flags.  
Only appears with bit flag variables or enumerated data types.

Provides descriptive words or phrases for each potential bit flag value. 

Yes

No

No

Yes for all numeric 
data types

Yes

No

No

No

No
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data. The ASF data system, comparable to the EOSDIS 
Core System, provides ingest, cataloging, archiving, and 
distribution of ASF DAAC’s complete data holdings. ASF 
distributes focused and unfocused SAR data products, 
browse images, and relevant metadata in multiple formats 
through the Vertex data search portal (https://vertex.daac.
asf.alaska.edu).  

ASF DAAC Support of NASA Missions

The ASF DAAC provides support for NASA and 
NASA-partner missions assigned to it by the ESDIS Proj-
ect. The ASF DAAC has extensive experience managing 
diverse airborne and spaceborne mission data, working 
with various file formats, and assisting user communities 
to further the use of SAR data. These efforts are facil-
itated, in part, by ASF Scientists and Data Managers, 
who interact with mission teams, provide subject matter 
expertise, inform data and metadata formats, evaluate 
data structure and quality, and address data support 
needs. A key project component at ASF is the core prod-
uct team, which provides integration of new datasets into 
the ASF data system and ensures efficient coordination 
and support of each mission. The team members have 
mission-specific expertise and consist of the following 
personnel:

•	 The Project Manager is the team leader who over-
sees mission activities at ASF and coordinates with 
external groups.

•	 The Product Owner is a primary product stakeholder 
and oversees ingest, archive, documentation, and 
distribution of data products as well as managing in-
teractions with mission and ASF scientists and other 
stakeholders.

•	 The User Services Representative (uso@asf.alaska.
edu) supports data users with products and software 
tools and communicates user feedback or sugges-
tions for improvement to the Project Manager and 
Product Owner.

•	 Software Engineers design, develop, and maintain 
software for the acquisition, processing, archiving, 
and distribution of satellite and aerial remote sensing 
data.

•	 Software Quality Assurance technicians provide soft-
ware and web-based-application testing prior to de-
livery to the production data system to ensure integ-
rity, quality, and overall proper functionality through 
testing methods to uncover program defects, which 
in turn are reported to software engineers.

•	 The technical science writer composes and edits a 
variety of ASF materials, from newsletter articles to 
technical documentation.

The core product team’s responsibilities for data manage-
ment include: 

•	 Ingesting, cataloging, archiving, and distributing data

•	 Providing guidance on file formats and integration of 
new file formats into the ASF data system

•	 Describing data products and producing user manu-
als and guide documents

•	 Creating metadata and exporting it to ECHO and 
GCMD (Global Change Master Directory)

•	 Ensuring accurate metrics are reported to EMS  
(ESDIS Metrics System)

•	 Designing, developing, and deploying specialized 
data portals that allow online access to data prod-
ucts and information

•	 Creating software tools for data interpretation and 
analysis

•	 Assisting users with the selection and usage of data

ASF also supports NASA and partner missions through 
the operation of a ground station with two 11-m anten-
nas, providing complete services, including data down-
linking, commanding, and range/Doppler tracking. ASF is 
part of the NASA NEN supporting a variety of low-Earth-
orbit spacecraft.

ASF DAAC Data Systems

The ASF DAAC operates a custom data system designed, 
implemented, and supported by DAAC personnel. During 
its evolution, the ASF data system has moved from 
using primarily custom software on capital equipment 
to commodity hardware and commercial off-the-shelf 
(COTS) software and hardware solutions. This has greatly 
lowered development and maintenance costs for the data 
system, while simultaneously providing a higher level of 
performance. The ASF DAAC data system provides the 
following capabilities: 

Data Ingest

•	 Automated data ingest occurs from the ASF ground 
station as well as external data providers in a variety 
of media and formats.

•	 Ingested data are pre-processed when necessary, 
providing browse or derivative products.
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Data Archive

•	 The central ASF data system archive is provided by a 
Data Direct Networks gridscaler storage system.

•	 This system provides direct access to over 1 PB of 
processed data as well as the capability for automat-
ed backups to an offsite location.

•	 Raw data are held in a robotic silo for access by the 
processing system. ASF maintains a backup in an 
external location in case of silo failure.

Data Distribution

•	 ASF provides direct http access to DAAC data prod-
ucts and utilizes NASA’s User Registration System 
(URS) for user authentication.

•	 NASA data are provided to public users with no 
restrictions. Partner data are provided to NASA-ap-
proved users through URS for authentication and 
ASF’s internal database for access control.

•	 The data system provides web-based access to the 
archive through distribution portals Vertex and URSA 
(User Remote Sensing Access). Vertex supports the 
data pool with direct download of processed data, 
while URSA provides the DAAC’s more advanced 
users with custom processing for particular science 
applications.  

•	 Through custom portals and applications, the DAAC 
provides additional services such as mosaic subset-
ting, mosaicking, and time-series analysis.

Data Support 

•	 ASF DAAC exports relevant metadata to NASA’s 
ECHO system.

•	 ASF DAAC exports ingest, archive, and download 
metrics to NASA’s EMS system.  

•	 ASF DAAC assists users with data discovery and 
usage, maintains product documentation and use 
guides, and supports feedback between the ASF 
user community and the core product teams. 

SMAP at ASF DAAC

ASF provides a variety of services, software tools, and 
user support to address the needs of the SMAP user 
community. The ASF core project team will leverage 
on-going collaborations with the SMAP Project to identify 
and prioritize SMAP user community needs, which in 
turn will inform development and implementation of data 
support and value-adding services for the mission. The 
SMAP website at ASF (https://www.asf.alaska.edu/smap) 
will serve as an interactive data portal, providing users 
with relevant documentation, custom tools and services, 
and ancillary data and resources. 

Post-Launch SMAP Data

ASF will ingest, distribute, archive, and support post-
launch Level 1 radar products for the SMAP mission. ASF 
will receive the Level 1 radar products from the SMAP 
Science Data System at the Jet Propulsion Laboratory 
(JPL) in Pasadena, California (Table 6). 

Non-SMAP Data of Interest to SMAP

ASF will cross-link from the SMAP website to data col-
lections that complement SMAP data and are of interest 
to the user community. Some of these collections are 
distributed by ASF, including the following:

•	 Airborne Microwave Observatory of Subcanopy and 
Subsurface (AirMOSS) data products

•	 Jet Propulsion Laboratory Uninhabited Aerial Vehicle 
SAR (UAVSAR) data products

•	 MEaSUREs (Making Earth System Data Records for 
Use in Research Environments) Inundated Wetlands 
data products

SMAP Mission Short Name

L1A Radar

L1B_S0_LoRes

L1C_S0_HiRes

File Size (MB)

Table 6. SMAP science data products at ASF DAAC.

Description Files per Day

SPL1AA

SPL1BS0

SPL1CS0

Parsed Radar Telemetry

Low-Resolution Radar so 

in Time Order

High-Resolution Radar so 

on Swath Grid

2,965

300
  

1,557

30

30
  

30

DAAC Short Name
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•	 Advanced Land Observing Satellite-Phased Array 
L-band SAR (ALOS PALSAR) 

•	 Japanese Earth Resources Satellite-1 (JERS-1) 
image data and mosaics

B. SMAP Data Management at the NSIDC 

The NSIDC is a part of the Cooperative Institute for 
Research in Environmental Sciences (CIRES) at the 
University of Colorado Boulder. NSIDC supports research 
into the world’s frozen realms: the snow, ice, glaciers, 
frozen ground, and climate interactions that make up 
Earth’s cryosphere. NSIDC also manages and distributes 
scientific data, creates tools for data access, supports 
data users, performs scientific research, and educates 
the public about the cryosphere. NSIDC distributes more 
than 500 Earth science datasets collected from satellite, 
aircraft and ground instruments through its website (www.
nsidc.org). The NSIDC DAAC within NSIDC is one of NA-
SA’s EOSDIS Data Centers and focuses primarily on the 
study of the cryosphere. The NSIDC DAAC (http://nsidc.
org/daac/index.html) provides data support for NASA’s 
past and current EOS satellites and field measurement 
programs. NASA Headquarters assigned data manage-
ment of the Decadal Survey SMAP mission to the NSIDC 
DAAC, in collaboration with ASF, based on the center’s 
experience managing passive microwave soil moisture 
data for NASA’s Advanced Microwave Scanning Radiom-
eter— EOS (AMSR-E) mission. 

NSIDC DAAC Support of NASA Missions

The NSIDC DAAC has been archiving and distributing 
data for NASA missions assigned to it by the ESDIS Proj-
ect for more than 20 years. The DAAC has breadth and 
depth of experience managing heterogeneous data prod-
ucts, data formats, and user communities. Through early 
engagement with mission teams, NSIDC scientists and 
data managers bring significant value to the missions by 
providing expert counsel on data and metadata formats, 
data structures, and data support needs. 

To aid in the efficient coordination of support, NSIDC 
DAAC assigns a dedicated Product Team Lead (PTL) to 
each mission. The PTL performs external coordination 
with instrument teams, data production facilities, and the 
ESDIS Project to develop formal agreements and define 
overarching operational processes and data flows. PTLs 
coordinate internal activities through a dedicated Product 
Team. The Product Team combines functional skills, such 
as Data Operations, Technical Writing, User Support, 
Science Support, and Programming, with mission-spe-
cific expertise enabling customized support of the 
mission data and the scientific community. The Product 
Team model, shown in Figure 18, provides a continuous 
feedback loop between the science users and the DAAC, 

•		Data	 
    Operations
•		Programmers
•		Scientists

•		User	Services
•		Scientists

Acquire/
Produce

Describe

DistributeSupport

•		Technical 
    Writers
•		Scientists

•		Data	 
    Operations
•		Programmers

Product Team Lead

Figure 18. NSIDC DAAC mission support product team model.

which drives enhancements to documentation, data hold-
ings, and services. The continuous feedback also extends 
to the external mission teams when data quality assess-
ments or data user requests warrant involvement from the 
science team or data production facility. 

The Product Team’s core functions for data management 
center around four areas:

Acquire and/or Produce Data

•	 Advise on data formats, structure, and delivery  
methods

•	 Establish automated processes for the transfer of 
data into DAAC data systems

•	 Develop or integrate, test, verify, and run data pro-
duction code (for applicable data)

Describe Data

•	 Create collection-level metadata and, when nec-
essary, extract file-level metadata for provenance 
tracking and data discovery

•	 Export metadata to ECHO and the GCMD (Glob-
al Change Master Directory) for cross-mission, 
cross-sensor NASA Earth science data discovery
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•	 Develop user documentation and supplemental infor-
mation based upon the scientific community needs 
and NSIDC best practices

Distribute Data

•	 Provide free online access to data (FTP and sub-
scription service)

•	 Provide specialized portals and data services in ac-
cordance with the scientific community needs

Support Data 

•	 Assist user communities with the selection and 
usage of data and tools

•	 Work with user communities to identify data and tool 
needs

•	 Provide outreach and education to broaden the 
mission user community

NSIDC DAAC Data Systems

NSIDC is one of three DAACs that operate the EOSDIS 
Core System (ECS) for management of NASA mission 
data (Maurer and Leon 2009). ECS, developed and 
maintained by Raytheon for ESDIS, is a robust system of 
hardware, custom-developed software and COTS soft-
ware operated and monitored by NSIDC Data Operations 
staff with support from on-site Raytheon contractors. 
ECS’s flexibility to manage a wide range of Earth science 
data is a function of its inventory management systems. 
Comprehensive, accurate, and consistent metadata (i.e., 
data about data) provide the foundation for almost all 
data preservation and access functions. ECS provides a 
well-established and adaptable system for capturing and 
storing metadata. In addition to rich metadata defined 
by the missions stored within data files, ECS requires 
a separate metadata file that defines core attributes for 
preservation and discovery. The metadata is stored within 
ECS and plays a critical role in ensuring the integrity of 
science data. Checksums, a digital signature used to 
detect whether errors have occurred in transmission or 
storage, are recorded in the metadata and validated after 
files have been ingested and periodically throughout their 
storage life.  

A portion of metadata is sent to NASA’s ECHO, a meta-
data registry and order broker developed by ESDIS to 
enable the science community to more easily locate and 
access NASA’s data and services. NSIDC DAAC utilizes 
NASA’s Reverb (http://reverb.echo.nasa.gov/reverb) as 
the search and order portal for data held in the ECS. Re-
verb connects to ECHO and exposes data from all NASA 
Data Centers. This distributed discovery enables users to 

obtain multidisciplinary, multimission data from one portal 
regardless of its physical location. Orders for NSIDC data 
placed through Reverb are sent to the DAAC for pro-
cessing and delivery. Reverb also enables the invocation 
of data services such as reformatting, re-projection, and 
subsetting. ECS provides the following capabilities:

Data Ingest

•	 Automates ingest of data in multiple formats from 
external data providers

•	 Performs data transfer reconciliation and verification

•	 Allows for the ingest of science data, metadata, 
quality assurance, and production history files as well 
as quick-look browse images

Data Archive

•	 Maintains a primary online disk copy of science data 
and a redundant tape backup 

•	 Provides automated file management (e.g., duplicate 
file detection and deletion) and file integrity (e.g., 
checksum verification) functions

Data Distribution

•	 Provides direct FTP access to all public data holdings

•	 Offers data subscriptions for automated delivery of 
data

•	 Provides data search and order through NASA’s  
Reverb Portal (http://reverb.echo.nasa.gov/reverb)

 •					Displays	quick-look	browse	images	to		 	
                     assist with data selection 

	 •					Enables	services	for	select	datasets,		 	
                     such as spatial subsetting, reformat-  
        ting, and re-projection

Inventory Management

•	 Stores collection-level and file-level metadata for the 
following:

	 •					Preservation	—	checksums,	algorithm		 	
                     versions, input data files

	 •					Data	Discovery	and	Usage	—	platforms,		 	
                     instruments, parameters, temporal   
        coverage, spatial coverage

•	 Exports inventory metadata to NASA’s ECHO to 
enable discovery of NSIDC DAAC holdings
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SMAP at NSIDC DAAC

NSIDC supports a range of services designed to meet 
the needs of user communities with varying requirements 
and applications. Through collaboration with the SMAP 
Project and insight into the SMAP community through 
the Application Working Group and the Early Adopter 
program, NSIDC will strategically develop and implement 
data support and value-adding services for the mission. 
The SMAP website at NSIDC (http://nsidc.org/data/
smap/index.html) serves as a gateway to data, compre-
hensive user documentation, tools and services, and 
related data and resources.  

The NSIDC DAAC will provide management of three main 
categories of data for the SMAP mission: post-launch 
SMAP data, pre-launch SMAP data, and non-SMAP data 
of interest to SMAP. These data categories, as well as 
the classification of user communities and corresponding 
data access policies, are being formally defined by the 
SMAP Project with collaboration from NSIDC DAAC.  

Post-Launch SMAP Data

NSIDC is responsible for the archival, distribution, and 
support of post-launch Level 1 passive microwave prod-
ucts and Level 2–4 passive microwave and radar prod-
ucts (Table 7). NSIDC will receive the Level 1–3 products 
from the SMAP Science Data System at the Jet Propul-
sion Laboratory in Pasadena, California and the Level 4 
products from the Global Modeling and Assimilation Office 
at NASA Goddard Space Flight Center in Greenbelt, 
Maryland.  

NSIDC DAAC will also provide data access, information 
and support for post-launch SMAP validation datasets. 
The validation data suite includes data archived and 
distributed by NSIDC and data held at other established 
Data Centers. The NSIDC SMAP website will provide cen-
tralized access to validation data regardless of physical 
location. 

SMAP Mission Short Name

L1A_Radiometer

L1B_TB

L1C_TB

L2_SM_A

L2_SM_P

L2_SM_AP

L3_FT_A

L3_SM_A

L3_SM_P

L3_SM_AP

L4_SM

L4_SM

L4_C

File Size (MB)

Table 7. SMAP science data products at NSIDC DAAC.

Description Files per Day

SPL1AP

SPL1BTB

SPL1CTB

SPL2SMA

SPL2SMP

SPL2SMAP

SPL3FTA

SPL3SMA

SPL3SMP

SPL3SMAP

SPL4SMGP
 

SPL4SMAU

SPL4C

Radiometer Data in Time-Order

Radiometer TB in Time-Order

Radiometer TB in Half-Orbits

Soil Moisture (Radar)

Soil Moisture (Radiometer)

Soil Moisture (Radar + Radiometer)

Freeze/Thaw State (Radar)

Soil Moisture (Radar)

Soil Moisture (Radiometer) 

Soil Moisture (Radar + Radiometer)

Soil Moisture (Surface and Root 
Zone ) Geophysical Data

Soil Moisture (Surface and Root 
Zone ) Analysis Update Detail

Carbon Net Ecosystem Exchange

3,466

54

12

71

1

10

1,410

3,335

15

281

2,109

2,776

116

30

30

30

30

15

15

1

1

1

1

1

1

1

DAAC Short Name
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Pre-Launch SMAP Data

The SMAP Applications Working Group Early Adopter 
program was developed to provide a fundamental under-
standing of the utility and the integration of SMAP data 
into applications research. As part of joining the program, 
the SMAP Early Adopters are provided access to simulat-
ed SMAP products and pre-launch calibration and valida-
tion data from SMAP field campaigns. The NSIDC DAAC 
leverages its data distribution infrastructure to provide 
access to these pre-launch data to the Early Adopters 
and other approved users on behalf of the SMAP Project. 
After approval by the SMAP Project and acknowledgment 
of the pre-launch data use agreement, users are provided 
a login to the NSIDC SMAP Restricted Data website for 
convenient access to SMAP simulation and validation 
data, product documentation, and other resources.

Non-SMAP Data of Interest to SMAP

NSIDC will also provide a connection to those data 
collections that are complementary to SMAP data and 
provide value to the user community. A selection of these 
collections is distributed by NSIDC, such as the AMSR-E 
mission data and the AMSR-E Validation Soil Moisture 
Experiment (SMEX) field campaign data. Data collections 
held at other centers, including international missions 
such as the European Space Agency’s Soil Moisture and 
Ocean Salinity (SMOS) data, will be referenced. 
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3. Instrument Design and L1 Data Products

I. SMAP Instrument Overview

The SMAP instrument is required to meet the following 
high-level measurement objectives:

•	 1000-km swath width at orbit altitude of 685 km in 
order to meet 3-day revisit time for soil moisture  
(2-day revisit time at high latitudes for freeze/thaw)

•	 Co-located L-band active radar measurements and 
passive radiometer measurements at a constant 
incidence angle near 40º 

•	 Polarimetric radiometer measurements at spatial 
resolution of 40 km

•	 Dual-polarized radar measurements at spatial resolu-
tion of 3 km

To accomplish this challenging set of requirements, a 
6-m conically-scanning reflector antenna architecture 
was selected for the instrument design. The deployable 
mesh antenna is shared by both the radiometer and 
radar instruments by using a single L-band feed. While 
the radiometer resolution is defined as the real aperture 
antenna footprint, the higher resolution radar measure-
ments are obtained by utilizing synthetic aperture radar 
(SAR) processing. These are common techniques, but 
newly applied by the SMAP Project to a scanning mesh 
antenna. At the nominal SMAP altitude of 685 km, the 
reflector must be rotated at a minimum rate of 13.0 rpm 
to maintain contiguity (i.e., minimum overlap) of the mea-
surements in the along-track direction (Figure 19). 

The overall SMAP instrument architecture is shown in 
Figure 20. Because the rotating reflector is shared by the 
radiometer and radar, the RF signals from the Earth must 
be separated by frequency diplexers into the active and 
passive bands. These diplexers are located on the spun 
side of the observatory as shown in Figure 20. Note that 
all of the radiometer electronics are located on the spun 
side of the interface to minimize front-end losses, with slip 
rings providing a telemetry, signal, and power interface 
to the spacecraft. The more massive and more thermally 
dissipative radar electronics are on the fixed side, with 
the transmit/receive pulses routed to the spun side via a 
two-channel RF rotary joint.

The following sections describe in detail the radiometer 
and radar instruments, along with their associated pro-
cessing and data products.

II. The SMAP Radiometer

A. Radiometer Performance Requirements

The SMAP radiometer is required to meet the following 
performance requirements:

•	 Obtain time-ordered measurements of brightness 
temperature at the surface of the Earth at Vertical (V) 
and Horizontal (H) polarizations along with the third 
and fourth Stokes parameters (T3 and T4) of the 
microwave radiation

Antenna 
Beam
Footprint

Nadir Track

Figure 19. Schematic of the SMAP conically scanning antenna beam 
mapping out a swath width of 1000 km at Earth’s surface. Top: Helical 
pattern mapped out by the conical antenna scan coupled with the for-
ward motion of the spacecraft; light blue depicts the antenna boresight 
direction and intersection at the surface; dark blue depicts the 3-dB 
real-aperture footprint area (characteristic of the radiometer spatial res-
olution). Bottom: Synthetic aperture processing applied to the radar data 
results in variable spatial resolution across the swath, from approximate-
ly 1 km (high resolution) at the edge of the swath to approximately 30 km 
(low resolution) at the nadir track; the cross-hatched portion illustrates 
the region of the swath where the spatial resolution is between 1 and 
3 km (referred to as the “hi-res” radar data region).

Nadir

High-Res Radar

Radiometer and 
Low-Res Radar

Nadir gap in high-resolution radar data: 200–300 km

1000 km
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Figure 20. Simplified instrument functional diagram.

•	 Obtain time-ordered brightness temperatures at  
40 km spatial resolution

•	 Obtain time-ordered brightness temperatures at V 
and H polarizations with errors from the following 
sources removed: antenna pattern and loss effects, 
Faraday rotation, atmospheric effects (excluding rain), 
and solar, galactic, and cosmic radiation

•	 Obtain geolocation information with an uncertainty 
(3-sigma) of less than 4 km

•	 Achieve radiometric accuracy for H and V brightness 
temperature measurements of 1.3 K or less (1-sigma) 
computed by binning fore- and aft-look samples into 
36 km x 36 km grid cells

•	 Mitigate TB measurement errors due to RFI of  
0.3 K (1-sigma) or less

•	 Collect data that meet the above requirements over 
all land areas of science interest
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B. Radiometer Technical Design

The SMAP instrument architecture consists of a 6-m con-
ically-scanning reflector antenna and a common L-band 
feed shared by the radar and radiometer. The reflector ro-
tates about the nadir axis at a stable rate that can be set 
in the range between 13–14.6 rpm, producing a conically 
scanning antenna beam with an approximately 40-km, 
3-dB footprint at the surface with an Earth incidence angle 
of approximately 40º. The conical scanning sweeps out a 
1000-km-wide swath with both fore and aft looks for the 
radiometer.

The feed assembly employs a single-horn, orthomode 
transducer, with V and H polarizations aligned with the 
Earth’s surface polarization basis, and covers both radar 
and radiometer bands. The radiometer uses 24 MHz 
of bandwidth centered at 1.4135 GHz. The radar and 
radiometer signals are separated by frequency diplexers 
within the coaxial cable-based feed network and routed to 
the appropriate electronics for detection. The radiometer 
electronics are located on the spun side of the interface. 
Slip rings provide a signal interface to the spacecraft. The 
more massive and more thermally dissipative electronics 
of the radar are on the de-spun side, and the transmit/
receive pulses are routed to the spun side via a two-chan-
nel RF rotary joint. The radiometer timing for the internal 
calibration switching and detection integrators is synchro-
nized with the radar transmit/receive timing to provide 
additional RF compatibility between the radar and radi-
ometer and to ensure co-alignment of the brightness tem-
perature and backscatter cross-section measurements. 

The radiometer block diagram is shown in Figure 21. The 
front-end comprises a coaxial cable-based feed network 
and radiometer front-end (RFE) box. The feed network 
includes a coupled noise source (CNS) for monitoring 
front-end losses and phase changes. The diplexers (DIP) 
separate the radar and radiometer bands. Internal cali-
bration is provided by reference switches and a common 
noise source (Noise SRC) inside the RFE. The RF back-
end (RBE) downconverts the 1413 MHz channel to an 
intermediate (IF) frequency of 120 MHz. The IF signals are 
then sampled and quantized by high-speed analog-to- 
digital converters in the radiometer digital electronics 
(RDE) box. The RBE local oscillator (PLO-OSC) and RDE 
sampling clocks are phase-locked to a common refer-
ence to ensure coherency between the signals. The RDE 
performs additional filtering, subband channelization, 
cross-correlation for measuring T3 and T4, and detec-
tion and integration of the first four raw moments of the 
signals. These data are packetized and sent to the ground 
for calibration and further processing.

The radiometer timing diagram is shown in Figure 22. For 
every pulse repetition interval (PRI) of the radar, the radi-
ometer integrates for ~350 µs during the receive window. 

(The exact amount of time can vary based on the radar 
PRI length and blanking time length chosen by the instru- 
ment designers.) Radiometer packets are made up of  
4 PRIs. Each science data packet includes time-domain 
data of the entire passband (called “fullband” data) for 
each of the 4 PRIs, and subbanded data, which have 
been further integrated to 4 PRIs or ~1.2 ms. The science 
telemetry includes the first four sample raw moments 
of the fullband (24 MHz wide) and 16 subband (each 
1.5 MHz wide) signals, for both polarizations and sepa-
rately expressed in terms of the in-phase and quadrature 
components of the signals. The 3rd and 4th Stokes pa-
rameters are also produced via complex cross-correlation 
of the two polarizations for the fullband as well as each 
of the 16 subbands. Every science data packet therefore 
contains 360 pieces of time-frequency data. 

A radiometer footprint is defined to be 12 packets long, 
8 of which are for observing the scene and the 5th, 6th, 
11th, and 12th for internal calibration. Figure 23(a) shows 
the formation of a footprint in terms of 3-dB contours. 
Integration of the 8 observing packets slightly enlarges  
the antenna’s instantaneous field of view (IFOV) from 
36 km x 47 km to an effective field of view (EFOV) of 
39 km x 47 km. The EFOV spacing shown in Figure 23(b)  
is approximately 11 km x 31 km near the swath center.

C. RFI Detection and Mitigation

SMAP’s radiometer passband lies within the 1400–
1427 MHz Earth Exploration Satellite Service (EESS) 
passive frequency allocation. Both unauthorized in-band 
transmitters as well as out-of-band emissions from trans-
mitters operating at frequencies adjacent to this allocated 
spectrum have been documented as sources of radio 
frequency interference (RFI) to the L-band radiometers on 
SMOS (Mecklenburg et al. 2012) and on Aquarius (La-
gerloef et al. 2008; Piepmeier and Pellerano, 2006; Misra 
and Ruf, 2008; Ruf et al. 2012). RFI impacts the amount 
and quality of radiometer measurements from space that 
are available for routine science from these missions. 
Since this is a serious issue that is expected to be present 
during the SMAP mission lifetime, SMAP will be the first 
spaceborne radiometer to fly a dedicated subsystem to 
enable detection and mitigation of RFI.

SMAP takes a multidomain approach to RFI mitigation 
utilizing an innovative onboard digital detector back-end 
with digital signal processing algorithms to characterize 
time, frequency, polarization, and statistical properties of 
received signals. Almost 1000 times more measurements 
than conventionally necessary are collected to enable 
the ground processing algorithms to detect and remove 
harmful interference. The SMAP radiometer instrument 
provides a large amount of information with time frequen-
cy diversity that is telemetered from the satellite to enable 
the use of multiple RFI detection methods on the ground. 



SMAP HANDBOOK34

FPGA-
Based

Timing, CMD,  
TLM and  

Packetization

DC-DC Conv with 
EMI Filtering CMN 
MD Filtering and 

HK Meas

HK
IF

Ckts

FPGA-
Based

Digital Signal
Processing

Analog
Processing  

and A/D

RDE 
HK

Slip
Ring
Assy

S/C
PWR

S/C

Radar

PLO OSC
CLK

IF

PWR
Cond

Downconv.
IFRF

IFRF

Noise
SRC

CMD/
CTRL

RF Chain  
with Ref Switch

HK

RF Chain  
with Ref Switch

COUP

CNS

COUP

DIP

DIP

Downconv.

RDERBE

RADAR

PDU

RFE

RF Mon’s

PWR
Cond

1.4 GHz
Radiometer

Figure 21. Block diagram of radiometer.

Radiometer Integration Window ~350 µsRadar
Transmit

Pulse Repetition Interval (PRI) ~350 µs

PRI 3PRI 2 PRI 4PRI 1

Radiometer Packet
1.4 ms Elapsed Times

1.2 ms Integration Time

Packet

Figure 22. Radiometer observation/internal calibration timing.

2

4 Packets of Scene Obser.

Footprint 1 43 65 87 109 1211

Cal
Counts

Cal
Counts

4 Packets of Scene Obser.



SMAP HANDBOOK 35

Many of these detection techniques have been previously 
demonstrated; however, the SMAP radiometer is the first 
to enable complex RFI detection and mitigation in the 
ground software. The outputs of multiple RFI detection 
algorithms will be combined using a maximum probabil-
ity of detection algorithm. Data indicated as RFI will be 
removed within a certain number of samples defined as a 
footprint and the rest of the “clean” data will be averaged 
to produce an RFI-free brightness temperature footprint 
product.

Samples measured every 350 µs over the full 24-MHz 
radiometer bandwidth are referred to as fullband mea-
surements. One of the detection methods used is the 

time-domain or pulse-detection algorithm, which searches 
in time for increased levels of observed antenna tem-
peratures above those produced by geophysical prop-
erties. This detection method is applied to the fullband 
time series data with an RFI detection occurring if a time 
sample is a certain number of standard deviations above 
the mean brightness temperature of the scene which 
is estimated by removing a certain percent of samples 
within a time measure (Niamsuwan et al. 2005; Johnson 
and Potter, 2009). The number of standard deviations, 
β, is defined as the threshold level and is set to accept a 
certain number of false alarms, which are detected RFI 
samples when RFI is not present. Each detection method 
has an associated threshold level, β, which varies geo-
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graphically with a 1x1º resolution in latitude and longitude 
— this is consistent with the Aquarius approach and grid 
for β. The 1x1º resolution grid was also chosen because 
it includes the full null-to-null beamwidth of the SMAP ra-
diometer on the ground. This approach allows aggressive 
lower thresholds to be set in areas of persistent RFI and 
higher thresholds in RFI “quiet” areas, thereby reducing 
loss of “good” samples due to false alarms. In the ground 
processing, each detection algorithm produces a set of 
flags, with 1 indicating RFI detected for a particular sam-
ple and 0 indicating no RFI detected.

To produce more sensitive RFI detections, the measure-
ment bandwidth is divided into 16 subbands, each with  
a 1.5-MHz bandwidth. These data are sampled every  
1.4 ms and are referred to as subband measurements. 
One detection method that uses these data is called the 
cross-frequency detector. It is similar to the pulse detector 
except that it searches for increased levels of antenna 
temperatures in any subband relative to other subbands 
(Guner and Johnson 2010; Guner et al. 2007). The 
cross-frequency detection method has been shown to be 
more sensitive to wideband interfering sources than other 
methods. 

Another detection method employed is a standard test for 
normality. The SMAP instrument produces the first four 
raw moments of the radiometer signal voltage in both the 
time and frequency domain. These moments are used 
to compute the kurtosis statistic, which has the unique 
property of being equal to 3 if the input is Gaussian in 
nature, such as thermally generated radiometric sources 
measured by SMAP. If the kurtosis statistic deviates from 
a value of 3, this is a clear indicator of the presence of 
man-made RFI sources which tend to have a non-Gauss-
ian distribution (Ruf et al. 2006).

Included in the SMAP radiometer data are the 3rd and 
4th Stokes parameters, which are produced via complex 
cross-correlation of the vertical and horizontal polariza-
tions for the fullband as well as each of the 16 subbands. 
Polarization detection uses the 3rd and 4th Stokes 
parameters to search for variations greater than a fixed 
number of standard deviations away from reasonable 
geophysical values to identify RFI (Kristensen et al. 2012). 

Since each of these detection methods is sensitive to 
different kinds of RFI, a complex method of integrating 
multiple detection results was developed. A single maxi-
mum probability of detection (MPD) flag, which minimizes 
the probability of missing the detection of RFI, is formed 
by a logical OR of each of the individual RFI detector 
outputs. Due to the logical OR operation, no RFI that is 
detected by any individual algorithm can ever be missed 
by the MPD algorithm. For this reason, the MPD flag 
minimizes the probability of missed detection — in other 

words, the probability of RFI detection is maximized given 
the available individual detectors. The MPD algorithm 
operates on both the fullband data (350 µs samples) and 
the 16-subband data (1.4 ms samples). The philosophy 
of using a logical OR operation to combine individual flags 
is used to combine the outputs of the two versions. If a 
fullband MPD flag is set high (indicating the presence of 
RFI), then all 16 subbands that include that time interval 
are considered contaminated with RFI. This methodology 
is illustrated in Figure 24. RFI removal is accomplished 
by including in the final product average (over the 8 
time sample by 16 subchannel spectrogram) only those 
second moment subband counts for which the composite 
MPD flag is not set. Thus, the final product is an average 
of the RFI-free samples forming an RFI-free footprint.

D. Radiometer Processing

The radiometer processing algorithms are described more 
completely in the L1B_TB ATBD. The L1B_TB Radiometer 
processing subsystem consists of four separate execut-
able programs:

•	 L0a preprocessor — collects metadata from each 
downlink telemetry file

•	 L0b preprocessor — organizes the downlink teleme-
try files into half-orbit granules

•	 L1A processor — unpacks telemetry data, sorts data 
into various radiometric states, and performs digital 
numbers to engineering units conversions

•	 L1B processor — performs calibration, RFI detec-
tion and mitigation, and removes error sources to 
produce brightness temperature products

The L0a and L0b preprocessors prepare the incoming 
downlinked telemetry files by stitching and splitting them 
into half-orbit granules. Some overlap is included at the 
beginning and end to ensure that all data are included 
in the final L1B_TB product files. The L1A processor un-
wraps the CCSDS packets which make up the telemetry 
files, parses the radiometer science data into various 
radiometric states, and creates and stores the time 
stamps for science data. Housekeeping telemetry such as 
temperature, voltage, and current monitor points are con-
verted to engineering units for each scan. These telemetry 
points are stored before and after unit conversion.

Each record of the resulting L1A file contains both 
fullband and subband data in high-rate mode (over land 
and calibration targets) and only fullband data in low-rate 
mode (over ocean). The L1A file is stored in HDF format 
and will be submitted for archival storage along with the 
output data products. The L1A file becomes the primary 
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input to the L1B processor. The L1A file provides the first 
four raw moments of the science telemetry needed for 
processing. In addition to the radiometer telemetry data, 
these processors will also require ancillary data to support 
geolocation and calibration. Processing radiometer data 
and locating them accurately on the Earth’s surface will 
require precise data on the location of the spacecraft and 
the attitude of the spacecraft and of the spinning antenna.
All of these data will be supplied in the form of standard-
ized SPICE kernel files by the navigation element of the 
project in coordination with the Navigation and Ancillary 
Information Facility (NAIF) at JPL. SPICE files follow format 
standards used by many JPL planetary missions and 
include a software library to access and manipulate them. 
More detailed information about NAIF and SPICE is avail-
able at http://naif.jpl.nasa.gov. Some additional instrument 
parameters and processing parameters will be supplied to 
the processors in instrument parameter files read by each 
of the executable programs.

E. L1B Product Description

The output L1B file in HDF format contains five main 
sections of data. The first is a metadata block, which 
contains information about the entire file. Metadata are 
divided into two groups: a general group present in all 
SMAP data products (including higher levels), and a prod-
uct-specific group that contains more specialized fields 
appropriate to the corresponding product. The general 
fields include input and output file names, types, and 
versions, time ranges of the contained data, generating 
software names, versions, dates of modification, and pro-
ducer description information. The product-specific group 
for L1B_TB includes bounding coordinates on the Earth 
for contained data, orbital parameters and times, output 
projection used, antenna rotation rate, product resolution, 
algorithm version, and thresholds applied during process-
ing. Following the metadata is the spacecraft data group, 

Figure 24. Example of the MPD operation. The bottom left plot shows the 
pulse-detection algorithm detecting RFI in the time domain and the cor-
responding time slice in the time-frequency data is flagged for removal, 
shown on the right plot. The cross-frequency algorithm detects RFI in the 
time-frequency data shown on the top left and that spectrogram element 

in addition to the elements of adjacent subbands are flagged for removal.  
All time-domain and frequency-domain detection methods similarly flag 
elements in the time-frequency data for removal. The remaining clean 
elements are then averaged to form a product.
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which records basic geometric fields once every revolu-
tion of the antenna. Included are the spacecraft position 
and attitude, and the nadir track position on the surface. 
Following the spacecraft data group is the high-resolu-
tion calibration data group, which consists of values for 
instrument component losses and noise temperatures for 
the vertical and horizontal polarizations for all 16 radiom-
eter subbands used in the internal calibration part of the 
algorithm. 

The next group is the calibration data group, which con-
tains values for instrument component losses and noise 
temperatures for the vertical and horizontal polarizations 
for the radiometer fullband. The brightness temperature 
group contains the products that are required based on 
science objectives. It contains time-ordered footprint 
averaged brightness temperatures (TBs) referenced to the 
Earth’s surface with error sources removed. This group 
also includes geolocation information, antenna tempera-
tures referenced to the feedhorn before and after radio 
frequency interference mitigation, error sources, quality 
flags, TB error, and noise-equivalent delta temperature 
(NEDT) along with relevant bit flags.

F. Calibration

Calibration of the radiometer science data reported in the 
L1B_TB product requires measuring and characterizing 
the gain and noise contributions from every part of the 
radiometer system from the antenna radiation pattern 
all the way through to the radiometer back-end. Most 
of these elements will have nominal values determined 
pre-launch during system integration and testing. Ground 
processing will incorporate these nominal values through 
an instrument parameter file read by the L1B processor. 
These parameters provide an initial calibration. The ra-
diometer is designed to meet stability requirements over 
a time span of 1 month in its gain and noise parameters 
that satisfy the measurement error budget. Long-term 
trends, biases, and systematic errors are corrected 
through the viewing of external calibration target areas 
that exhibit spatial uniformity and/or temporal stability. 

Since a full end-to-end calibration of the SMAP radi-
ometer including the reflector (effects of mesh emission 
and certain other reflector-related effects) can only be 
performed on orbit after the main reflector has been de-
ployed, end-to-end TB calibration shall be performed on 
orbit using external calibration targets. Desirable external 
calibration targets should be beamfilling, spatially homo-
geneous, temporally stable, and have a TB value that is 
independently known via measurement or calculation to 
a useful level of uncertainty. SMAP is considering several 
natural targets for use in external calibration: Antarctica, 
Amazon rain forests, the ocean, and cold space.

Aquarius and SMOS are using Antarctica to verify the cal-
ibration stability of the radiometer. Measurements across 
East Antarctica show subkelvin temporal stability. SMAP’s 
polar orbit will allow viewing of East Antarctica during  
~6 orbits every day. Amazon rain forests have been 
useful for trending the Aquarius radiometer’s calibration 
as well as the Aquarius scatterometer, although the 
temporal coverage is much less than for the Antarctic, 
and independently determining the Amazon forest TB is 
still a research area. SMAP has defined an area in the 
South Pacific that, based on oceanographic and clima-
tological considerations, should serve as a good external 
calibration target and that is viewable ~2 times per day. 
Knowing the ocean TB accurately requires knowledge of 
the sea state over the viewed area, as well as sea surface 
temperature (SST) and sea surface salinity (SSS). The 
Aquarius forward simulator will be used to help with this 
calculation. (The globally averaged open ocean is also 
relatively stable, with a TB around ~100 K. The global 
ocean TB requires global coverage, which means it would 
be available every 7 days.) Together, the ocean, East Ant-
arctica, and the Amazon will be complementary external 
calibration targets covering brightness temperatures from 
about 100 K to 300 K. For absolute TB calibration, the 
ocean and cold space (described next) remain the prima-
ry calibration targets since their TBs can be determined 
through independent means with the smallest uncertainty.  
East Antarctica and the Amazon forest will be used initial-
ly as stability references.

Monthly cold space calibration (CSC) is part of the SMAP 
mission baseline. A pitch maneuver will allow the entire 
conical scan to view space. In contrast to the other three 
external target candidates, the expected TB of cold sky 
can be computed in an absolute sense from basic phys-
ical principles and L-band brightness temperature maps 
of cold sky. For calibration purposes, L-band maps of the 
radio sky from radio astronomers will be used to avoid 
“hot spots” and to calculate the TB seen when integrating 
over the SMAP radiometer solid angle. The back lobe 
contributions from the Earth will be computed using the 
antenna gain of back lobes and expected brightness 
temperatures of Earth. Other uses of CSC include: (a) drift 
detection, (b) scan bias detection because the brightness 
temperatures of cold space are known quite well, and 
(c) on-orbit characterization of nonlinearity together with 
the other three external calibration targets. SMOS was 
able to use CSC to detect and correct for drift that took 
7 months to diminish as well as to use CSC for flat-field 
purposes. The SMAP L1B_TB simulator already incorpo-
rates the data and analysis tools to analyze the optimum 
locations over the Earth for the cold space viewing.
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G. Heritage and Data Continuity (Aquarius and 
SMOS)

As mentioned in Chapter 1, the SMAP mission was 
developed in response to the NRC’s Earth Science 
Decadal Survey and has significant roots in the Hydros 
Earth System Science Pathfinder (ESSP) mission, which 
was initially selected as an alternate ESSP mission and 
subsequently cancelled in late 2005 prior to Phase A. 
One significant feature SMAP adopted from Hydros is the 
footprint oversampling used to mitigate RFI from terrestrial 
radars. The Aquarius/SAC-D project, a NASA ESSP ocean 
salinity mission launched in June 2011, also influenced the 
SMAP hardware and calibration algorithm. The radiometer 
front-end design is very similar to Aquarius; for example, 
the external correlated noise source (CNS) is nearly an 
exact copy of that from Aquarius. Features of the Aquarius 
calibration algorithm, such as calibration averaging and ex-
traterrestrial radiation source corrections, are incorporated 
into the SMAP algorithm. Finally, the SMAP orbit simulator 
is a modification of the Aquarius simulator code.

SMAP’s antenna is conical scanning with a full 360º field of 
regard. However, there are several key differences (some 
unique) from previous spaceborne conical scanning radi-
ometers. Most obvious is the lack of external warm-load 
and cold-space reflectors, which normally provide radio-
metric calibration through the feedhorn. Rather, SMAP’s 
internal calibration scheme is based on the Dicke-Switch-
ing design used by Aquarius/SAC-D and Jason Advanced 
Microwave Radiometer (AMR) pushbroom radiometers, 
and uses a reference load switch and a coupled noise 
diode. The antenna system is shared with the SMAP radar, 
which requires the use of a frequency diplexer in the feed 
network. Like the Naval Research Laboratory’s WindSat 
instrument, SMAP measures all four Stokes parameters, 
although unlike WindSat, SMAP uses coherent detection 
in a digital radiometer back-subend. The first two modified 
Stokes parameters, TV and TH, are the primary science 
channels; the T3 and T4 channels are used to help detect 
RFI, which has recently proven quite valuable for the 
SMOS mission (Skou et al. 2010). The T3 channel mea-
surement can also provide correction of Faraday rotation 
caused by the ionosphere. Overall, the most significant 
difference SMAP has from all past spaceborne radiom-
eter programs is its aggressive hardware and algorithm 
approach to RFI mitigation.

III. The SMAP Radar

A. Radar Performance Requirements

The SMAP radar is required to meet the following perfor-
mance requirements:

•	 Obtain measurements of surface backscatter cross- 
section for HH and VV polarizations (co-polarized 
measurements)

•	 Obtain measurements of surface backscatter 
cross-section at HV or VH polarizations  
(one cross-polarized measurement selectable by 
ground command)

•	 Obtain measurements of co- and cross-polarized 
surface backscatter cross-section consistent with a 
multi-look data product at 3-km resolution over 70% 
of the approximately 1000-km scanned instrument 
swath using synthetic aperture processing

•	 Achieve radiometric accuracy of 1 dB for co-polar-
ized (HH and VV) measurements multi-looked/aver-
aged to 3-km spatial resolution

•	 Achieve radiometric accuracy of 1.5 dB for cross- 
polarized (HV or VH) measurements multi-looked/
averaged to 3 km

•	 Collect data that meet the above requirements over 
all land areas of science interest

•	 Collect data continually at a reduced, real-aperture 
resolution of 30 km continuously over the entire Earth 
(including oceans)

B. Radar Technical Design

Figure 25 displays a simplified block diagram of the 
SMAP radar functions. As the antenna rotates, the SMAP 
radar emits H-polarized and V-polarized pulse pairs 
at a pulse-repetition frequency (PRF) of approximately 
2850 Hz (Figure 26). The exact PRF varies slightly around 
the orbit to account for Earth’s oblateness. Each pulse 
is 15 µs in length, and is modulated to a linear-FM chirp 
of 1-MHz bandwidth. The H-polarized and V-polarized 
signals are transmitted in succession with a separation 
of 9 µs using a single high-power transmitter, and routed 
respectively to the H-pol and V-pol ports of the antenna 
by a polarization selection switch. The H-polarized and 
V-polarized transmit signals are at two different frequen-
cies, fH and fV, separated by 3 MHz. This frequency 
separation allows the resultant echoes from each transmit 
polarization to be distinguished during their simultaneous 
reception (Figures 26 and 27). In essence, the SMAP 
radar can be thought of as two simultaneously operating 
dual-polarized systems: one measuring HH and VH polar-
ization echoes, the other measuring VV and HV polariza-
tion echoes (where the convention of the notation used 
here is ordered first “receive polarization” then “transmit 
polarization”).

Upon receive, the signals from the V- and H-polarized 
antenna ports are routed to two identical receivers. After 
downconversion and sampling, each receiver applies 
a set of three digital filters (Figure 27). In the H-channel 
receiver, there is a 1-MHz filter centered on fH to measure 
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the HH co-polarized backscatter, and a filter centered on 
fV to measure the HV cross-polarized backscatter. The 
situation is reversed in the V-channel receiver, where fV 
and fH measure the VV co-polarized backscatter and 
VH cross-polarized backscatter, respectively. The output 
samples from the co-polarized and cross-polarized 
filtering operations are telemetered to the ground for 
SAR processing. In both receivers, there is also a 1-MHz 
“noise-only” filter in between the transmit frequencies 
for the purpose of measuring the thermal noise back-
ground. Note that SMAP is a relatively narrow-band radar 
compared to other spaceborne SARs. This is consistent 
with the SMAP mission’s moderate spatial resolution 
requirements. Following a standard technique utilized 
in radar scatterometry, a measurement of the receiver’s 
thermal noise power is subtracted from the signal power 
in ground data processing. This is a necessary step to 
prevent biasing the backscatter measurement at low 
signal levels. All of the filters are designed with high out-
of-band rejection to ensure suppression of RFI signals at 
frequencies outside the filter pass bands.

To obtain the required 3-km resolution for the freeze/
thaw and soil moisture products, the radar employs pulse 
compression in range as well as Doppler discrimination in 
azimuth to subdivide the antenna footprint. This is equiv-
alent to the application of SAR techniques to the conically 
scanning radar case. Due to squint angle effects, the 
high-resolution products will be somewhat degraded with-
in the 300-km region of the swath centered on the nadir 
track, with azimuth resolution capability decreasing over 
this region as the pixel location approaches the spacecraft 
sub-satellite track (Figure 28).

Radiometric calibration is accomplished by using a “loop-
back” approach whereby some of the energy in the trans-
mit pulse is coupled into the receiver to continuously track 
the transmit power–receiver gain product, which is used 
in the radar equation. Radiometric calibration “outside of 
the loopback” is accomplished by careful measurement 
of transmission losses (through cables, diplexer, rotary 
joint, etc.) over temperature pre-launch. A summary of the 
SMAP radar parameters is given in Table 8.

C. RFI Detection and Mitigation

The L-band region of the electromagnetic spectrum is 
heavily used, and it is well known that Earth remote sens-
ing at this frequency is subject to significant RFI. In order 
to meet radiometric accuracy requirements, the SMAP 
project has taken aggressive measures to both identify 
and mitigate the effects of RFI. Because SMAP is a global 
mapping mission with continuous, near-real-time genera-
tion of data products, any RFI mitigation techniques must 
lend themselves to reliable automation in ground pro-
cessing software. The SMAP radar operates in a “shared” 
band between 1215 and 1300 MHz with other services 
such as long-range aircraft tracking systems and satellite 
global positioning systems. The most dominant sources 
of interference globally are ground-based radiolocation 
radars used for long-range surveillance and tracking of 
aircraft. This category of systems employs rotating or elec-
trically scanning antennas with transmit powers anywhere 
from kilowatts to megawatts. These radiolocation systems 
operate over the entire 1215–1300 MHz remote sensing 
allocation, and conspicuously appear in all previously 
flown L-band radar missions (e.g., JERS, ALOS PALSAR, 
Aquarius, and the airborne NASA UAVSAR). In addition to 
these radiolocation systems, a variety of “other” services 
are observed less frequently, most notably near a few 
specific urban centers. These other emissions range from 
very low-power tonal signals to coded signals of unknown 
purpose. Finally, there are space-based systems, the 
largest of which are the global radio navigation satellites 
(GNSS) such as GPS. These systems are low power, but 
transmit a continuous broadband coded signal.
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Figure 25. Simplified block diagram of SMAP radar functions.
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Figure 26. Time-domain illustration of the SMAP radar transmit, reception, and polarization scheme.  
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Figure 27. Frequency-domain representation of the SMAP receiver showing filtering and tuning.
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For the SMAP radar, the most severe RFI issue will be 
from surface-based systems. In order to quantify this 
effect for the specifics of the SMAP design and to test 
mitigation algorithms, a simulation that consists of the 
many known emitters on the ground was constructed. 
This simulation of terrestrial RFI compares extremely well 

Antenna Key Parameters

Beamwidth (1-way, 3 dB)

Look Angle, Incidence Angle 

Peak Gain

Rotation Rate

Table 8. Approximate SMAP radar parameters.

2.7°

35.5°, 40.0°

36 dBi

13.0 to 14.6 rpm

Radar Key Parameters

Transmit Carrier Frequencies

Channels

PRF, Pulse Length

Azimuth Dwell Time

Transmit Bandwidth

Peak Transmit Power

Single-Look Res (broadside)

Noise Equiv. so (broadside)

Tunable from 1217.25 MHz to 1275.75 MHz 

HH, VV, HV (or VH)

2.9 kHz, 15 µsec

42 ms

1 MHz

500 W (at output of amplifier) 

250 m x 400 m

<–30 dB

with actual Aquarius data observed over North America, 
validating the model. Studies have shown that a slow-time 
thresholding (STT) approach is effective for detecting and 
excising terrestrial RFI (Belz et al. 2011; Chan and Spen-
cer 2009; Spencer et al. 2013). This approach involves the 
excision of raw radar data samples whose power exceeds 
a threshold that is set relative to the median power over 
a sliding window in the slow-time or azimuth dimension 
for each range bin. Excised samples can be filled with 
statistically representative data in order to avoid an addi-
tional radiometric bias. RFI mitigation studies with SMAP 
parameters indicate that, under nominal assumptions, the 
overall measurement errors due to RFI will be within the 
budgeted allocation of 0.4 dB RMS. The errors due to RFI 
are expected to show great temporal and spatial variabil-
ity; they will be undoubtedly quite large for some small 
fraction of measurements, and some geographical areas 
will likely be characterized by larger errors than others. 
However, the range of global variation seen in the Aquar-
ius data suggest that even over challenging geographic 
areas, reasonable measurements will still be possible.

Interference from satellite-based GNSS sources is expect-
ed to be much lower than that from terrestrial sources. 
Whereas Earth-based sources can generate interference 
many decibels above the expected echo signal levels, 
satellite sources typically generate interference below the 
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Figure 28. Range-Doppler geometry of rotating radar antenna beam, 
showing azimuth resolution degradation in the upper right panel at high 
squint angles.
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The L0a and L0b preprocessors prepare the incoming 
downlinked telemetry files by stitching and splitting them 
into half-orbit granules. Some overlap is included at the 
beginning and end to ensure that all data are included in 
the final L1B and L1C product files. The L1A processor 
unpacks the telemetry files, assembling radar records 
and decoding the raw telemetry data. Decoding includes 
all the necessary bit-level decoding and conversion of 
fields to floating-point values with standard SI units where 
needed.

Each record of the resulting L1A file contains data from 
one pulse-repetition interval (PRI) when the instrument 
is in high-resolution mode, and from one 48-PRI-long 
low-resolution interval when the instrument is operating 
in low-resolution mode. The block floating-point quan-
tized (BFPQ) encoded high-resolution samples are left 
unchanged at this stage so that diagnostic tools can 
examine the raw data using the L1A file. The L1A file is 
stored in HDF format and will be submitted for archival 
storage along with the output data products. The L1A file 
becomes the primary input to the L1B (low-resolution, re-
al-aperture) processor, the L1C (high-resolution, synthetic 
aperture) processor, the calibration preprocessor, and var-
ious diagnostic and support tools. The L1A file provides 
the echo samples measured by the radar along with the 
corresponding timing and frequency parameters needed 
for processing. In addition to the radar telemetry data, 
these processors will also require ancillary data to support 
geolocation and calibration. Processing radar data and 
locating them on the Earth’s surface will require precise 
data on the location of the spacecraft, the attitude of the 
spacecraft and of the spinning antenna, and the topogra-
phy of the Earth. All of these data will be supplied in the 
form of standardized SPICE kernel files by the navigation 
element of the project in coordination with the Navigation 
and Ancillary Information Facility (NAIF) at JPL. SPICE 
files follow format standards used by many JPL planetary 
missions and include a software library to access and ma-
nipulate them. More detailed information about NAIF and 
SPICE is available at http://naif.jpl.nasa.gov. Some addi-
tional instrument parameters and processing parameters 
will be supplied to the processors in algorithm parameter 
files read by each of the executable programs.

E. L1B Product Description

The output L1B file in HDF format contains four main sec-
tions of data. The first is a metadata block that contains 
information about the entire file. Metadata are divided into 
two groups: a general group present in all SMAP data 
products (including higher levels), and a product-specific 
group that contains more specialized fields appropriate 
to the corresponding product. The general fields include 
input and output file names, types, and versions, time 
ranges of the contained data, generating software names, 

receiver noise-floor level. The low-level “hum” associated 
with this interference can be significant for low-echo signal 
levels, but is readily removed by the use of the noise-only 
value in the noise subtraction process. The noteworthy ex-
ception to this is when there is a strong specular reflection 
off of a very smooth surface. The percentage of measure-
ments that will experience strong specular events above 
the noise floor, however, is much less than 2%. Such 
specular cases should have a readily recognizable “profile” 
in the noise-only measurement, and should be easy to flag 
in the radar data product.

If unexpected interference is encountered that is substan-
tially different from the readily mitigated RFI, the SMAP 
radar still has the ability to selectively tune the receiver 
to avoid these sources. A key feature of the SMAP radar 
design is that the transmit frequencies, along with the as-
sociated filter center frequencies, can be tuned anywhere 
within the 1217.25 MHz to 1275.75 MHz remote-sensing 
allocation (Figure 28) in steps of 1.25 MHz. Tuning to the 
desired frequency is accomplished by using a look-up ta-
ble that is dependent on geographic location. This tuning 
capability was implemented to allow frequency adjust-
ments in response to persistent interferers operating at a 
specific location, or in response to new emitters that may 
appear over time. During the early post-launch period, 
an “RFI survey” will be conducted. During this survey, the 
SMAP transmitter will be disabled, the radar frequency will 
be continuously tuned up and down the 1215–1300 MHz 
allocation, and the SMAP receiver will simply listen to the 
RFI environment. Results from this survey will be analyzed 
to determine the best frequencies to use for the SMAP 
radar during the science acquisition phase of the mission.  

D. Radar Processing

The radar processing algorithms are described more com-
pletely in the L1 Radar ATBD. The L1 radar processing 
subsystem consists of six separate executable programs:

•	 L0a preprocessor — collects metadata from each 
downlink telemetry file

•	 L0b preprocessor — organizes the downlink teleme-
try files into half-orbit granules

•	 L1A processor — unpacks telemetry data and per-
forms unit conversions

•	 Calibration Preprocessor — collects calibration data 
and updates calibration models

•	 L1B processor — Low-resolution radar processor

•	 L1C processor — High-resolution (SAR)  
processor
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versions, dates of modification, and producer description 
information. The product-specific group for L1B includes 
bounding coordinates on the Earth for contained data, 
orbital parameters and times, output projection used, an-
tenna rotation rate, product resolution, algorithm version, 
the DEM used, and thresholds applied during processing. 
Following the metadata is the spacecraft data group, 
which records basic geometric fields once every revolu-
tion of the antenna. Included are the spacecraft position 
and attitude, and the nadir track position on the surface. 
Following the spacecraft data group is the sigma0 data 
group, which consists of vectors of data organized in 
time-order. The primary field is the radar normalized 
backscattering cross-section with one value per 48-PRI 
low-resolution interval. 1-D arrays with shapes of one 
value per low-resolution interval are called sigma0 arrays. 
Included are vectors of data providing:

•	 Geographic coordinates

•	 Equal-Area Scalable Earth–2 (EASE2) grid  
coordinates

•	 Topographic data for the beam center point

•	 Geometric look vector data (e.g., azimuth and  
incidence angles, range)

•	 Surface type flag

•	 Number of looks

•	 Data quality flags

•	 Normalized radar cross-section (NRCS) for all  
channels

•	 NRCS standard deviations for all channels

•	 Calibration factors used

•	 Signal-to-noise ratio (SNR)

•	 Spatial resolution

Because the vectors are organized in time-order, the spa-
tial locations follow the scanning motion of the antenna 
and the orbital motion of the spacecraft. These measure-
ments are real-aperture results that apply to the full beam 
footprint on the surface (about 40 km across). The EASE2 
grid is a set of standard projections used by many Earth 
science missions. Following the sigma0 data group is an-
other set of 2-D arrays called the sigma0 slice data group. 
These arrays divide the beam footprint into 9–14 range 
slices with sizes of about 6 km by 40 km. The same fields 
are present here as in the sigma0 data group, but with 

higher range resolution. The range binning is actually done 
by the instrument before downlink to reduce data volume. 
These 2-D arrays called sigma0 slice arrays will have a 
second dimension size determined by the L1B processor 
to accommodate the data take.

F. L1C Product Description and Swath Grid

The output L1C product in HDF format is spatially orga-
nized (unlike the time-ordered L1B product) using a 2-D 
swath grid. A special coordinate system developed at JPL 
called SCH coordinates defines the swath grid used to 
project the output data. SCH coordinates are a spherical 
coordinate system that best approximates the WGS84 el-
lipsoid in the along-track direction. This coordinate system 
is readily referenced to conventional geodetic coordinates 
(latitude and longitude) and these coordinates are also 
supplied in the output swath format. Level 2 and higher 
SMAP products are also spatially organized, but they will 
use EASE2 grid projections instead of a swath-oriented 
projection. To aid in translating data between the radar 
swath grid and the EASE2 grids, the L1C product will 
include the index coordinates of the cylindrical and one of 
the polar EASE2 grids along with the WGS84 latitude and 
longitude for each swath grid point. The swath grid will 
have approximately 1 km posting; however, it should be 
noted that all performance requirements are specified for 
the corresponding 3-km grid obtained by averaging the 
1-km grid. The L1C product uses the swath grid rather 
than one of the EASE2 grids because the swath grid is 
more space efficient (fewer empty array positions in a 
half-orbit), and suffers from much less distortion. Further-
more, many important performance characteristics of the 
radar data such as the number of looks, the effective res-
olution, and the random error are functions of cross-track 
position but not of along-track position. Using a swath 
grid makes validation of the data an easier task.

The L1C product contains three sections of data. The first 
is the same metadata present in the L1B file. The second 
is the spacecraft data group that contains time-ordered 
geometry data (spacecraft position, velocity, and attitude) 
at the times when the spacecraft nadir point crosses each 
swath row. The third is the sigma0 data group organized 
as 2-D swath grid arrays. The primary field again is the 
sigma0 field. The L1C SAR processing algorithms will 
geolocate sigma0 results with respect to the 3-D ellip-
soidal surface of the Earth as defined by the WGS84 
Earth model. These data are then projected onto the 2-D 
swath grid. The same basic data fields listed earlier for the 
L1B file are also present in L1C files, but they will be 2-D 
spatially organized arrays rather than 1-D time-ordered 
vectors.
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G. SAR Processing Algorithm

The L1C processor begins with the formation of the 
output swath grid tailored for the current data granule. 
A full-resolution grid with 250 m spacing is generated to 
accumulate the correlation contributions that each pulse 
makes to its illuminated grid points. The processor works 
through the input data in time order, computing the illumi-
nated area for each pulse echo, and accumulating results 
in 2-D arrays over the swath grid. The basic processing 
flow follows the rectangular algorithm, which breaks 
the general 2-D correlation required for SAR processing 
into two successive 1-D matched filtering steps. First is 
range compression, which correlates the echo data with 
a replica of the transmitted FM chirp waveform. Second 
is azimuth compression, which correlates the range com-
pressed data with the computed Doppler history for each 
grid point. Azimuth compression is implemented using 
time domain correlation with back projection. A time-do-
main approach is favored because it easily accommo-
dates the varying squint angle around the conical scan. 
The scan is fast enough that the beam dwell time over 
any given grid point is relatively small (38 ms) compared 
to other SAR systems. This decreases the computational 
burden of a time domain algorithm. Nonetheless, latency 
requirements are a challenge since SMAP processing runs 
in real time. The three polarization channels and the fore 
and aft data are processed in parallel to reduce process-
ing times. Contributions to each grid point are scaled with 
the effective area of a resolution cell at that point and the 
beam gain in the look direction. Noise subtraction and 
gain calibration using an internal loop back measurement 
are applied to produce calibrated sigma0 values for the 
output. The full-resolution grid is averaged to 1-km spac-
ing and written into the output HDF product. The L1C 
processor also applies RFI filtering described earlier to 
each pulse echo, and a Faraday rotation correction based 
on externally supplied measurements of the ionosphere.

H. Calibration

Calibration of the co-polarized and cross-polarized 
backscatter measurements reported in the L1C product 
requires measuring and characterizing the gain and noise 
contributions from every part of the radar system from the 
antenna radiation pattern all the way through the ground 
processing algorithms. Most of these elements will have 
nominal values determined pre-launch during system 
integration and testing. Ground processing will incorpo-
rate these nominal values through an algorithm parameter 
file read by the L1C processor. These parameters provide 
an initial calibration. The radar system is designed to 
meet stability requirements over a time span of about 
1 month in its gain and noise parameters that satisfy the 
measurement error budget. Long-term trends, biases, 

and systematic errors are corrected through the use of 
external calibration target areas that exhibit spatial uni-
formity and temporal stability. Examination of backscatter 
data from other missions such as JERS-1, PALSAR-1, 
QuikSCAT, and Aquarius shows that suitable target areas 
fall into three broad geophysical categories: rain forests in 
the Amazon, Congo, and parts of Indonesia; ice sheets in 
Greenland and Antarctica; and a wind-corrected globally 
averaged ocean. The specific target areas for operational 
use will be selected during the post-launch SMAP cal/val 
period. The Amazon is particularly suitable because other 
missions like ALOS/PALSAR have used and future ALOS-
2 PALSAR will use it as a calibration reference, so there 
will be larger amounts of high-resolution data available. 
The ocean is also a suitable target for SMAP because 
the low-resolution radar data cover it frequently, and a 
wind correction using externally supplied wind fields can 
be applied similar to the approach used by the Aquarius 
mission.

The stable external target areas provide a cross-cali-
bration reference for the SMAP L1 radar backscatter, 
which will be used to set a global bias correction for the 
backscatter measurements. The bias correction will mini-
mize the differences between the SMAP backscatter over 
these target areas and the measurements made by the 
ALOS/PALSAR mission. PALSAR is a high-resolution, fully 
polarimetric L-band SAR system that made extensive use 
of man-made calibration references such as corner reflec-
tors and transponders to establish an absolute calibration 
level. The relatively lower resolution of the SMAP radar 
does not allow accurate calibration against corner reflec-
tors because the effective areas of these targets are too 
small relative to the SMAP resolution cell. By cross-cali-
brating with PALSAR, SMAP can indirectly make use of 
the PALSAR corner reflector based absolute calibration.

The radar system is designed to meet short-term stability 
requirements that add up to a relative calibration error 
of 0.35 dB. Here, “short term” means about 30 days, 
which is the time scale that pre-launch testing can test 
and verify. The radar error budget includes an addition-
al 0.2 dB of relative error due to long term variations in 
system gain. Long-term variations are expected due to 
component aging effects, seasonal temperature variation, 
and imperfections in the short-term temperature calibra-
tion models. Detecting and correcting long-term variations 
is performed using external targets with good long-term 
stability. The best candidate identified so far is the globally 
averaged wind-corrected ocean. Aquarius ocean data 
have shown backscatter stability around 0.1 dB over a 
2-year time span. Selected areas of the Amazon rain for-
est are another candidate. These have shown long-term 
stability of 0.2 dB if data are separated between dry and 
rainy seasons.
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The choice of external target to use for long-term de- 
trending will be made during the SMAP post-launch 
cal/val period. Pre-launch studies are performed using 
PALSAR and Aquarius data to provide initial target areas. 
During the L1 cal/val period, measurements from different 
target types will be compared for consistency and one 
will be chosen. A mixture of two target types may also be 
used for the final SMAP calibration.
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4. Soil Moisture Data Products

I. Passive, Active-Passive, and Active  
Products Overview

The SMAP Project produces three soil moisture products 
(see Chapter 2, Table 4). These products at Level 2 are 
titled L2_SM_P, L2_SM_A, and L2_SM_AP. They are 
half-orbit retrievals of soil moisture (SM) posted on nested 
fixed Earth grids of different spacing (36, 3, and 9 km, 
respectively). In the equivalent Level 3 products, individual 
half-orbit granules acquired over 24 hours are compos-
ited to produce daily multi-orbit global maps of retrieved 
soil moisture. Each of these soil moisture products has 
different attributes and uses the SMAP instrument data in 
different ways. The SMAP instrument package will deploy 
an L-band SAR and an L-band radiometer for concur-
rent coincident measurements. The L2_SM_P product is 
principally based on the passive (P) radiometer measure-
ments and hence its resolution and other data attributes 
are related to the radiometer brightness temperature 
characteristics. The L2_SM_A product uses the SMAP 
radar backscatter cross-sections and hence its data 
attributes and resolution are compatible with the active 
(A) instrument measurements. The active-passive (AP) 
soil moisture product combines the radar and radiometer 
measurements and hence its resolution is intermediate 
between the two. Besides their characteristic spatial 
gridding (36 km for the passive, 3 km for the active, 
and 9 km for the active-passive), the three soil moisture 
products will have other varying attributes owing to which 
instrument data are the primary input to their retrieval 
algorithms. These attributes additionally include accuracy 
because of the differences in the sensitivity of active and 
passive measurements to soil moisture. Factors such as 
vegetation water content and canopy density as well as 
surface roughness affect data from the two SMAP instru-
ments to varying degrees. Also, differences in retrieval 
algorithms affect the products. A good understanding of 
these considerations is critical to the selection of the most 
appropriate soil moisture product by SMAP users. In this 
chapter these three soil moisture products are described 
in detail, and the material presented should provide a 
valuable guide to their eventual use in diverse science  
and applications research.

At L-band, the observed radiometric brightness tem-
perature represents emission determined mainly by 
the physical temperature and dielectric constant of the 
observed scene (related to soil moisture in the top ~5 cm).  
The sensitivity to soil moisture decreases significantly for 
surfaces with vegetation water content (VWC) above  
~5 kg m–2. The SMAP radiometer instrument is designed 
to provide measurements of brightness temperature with 
better than 1.3 K uncertainty (1-sigma). Given that the 
brightness temperature difference across the dynamic 
range of surface soil moisture can be many tens of K (up 
to ~70 K and higher), the L-band radiometer is a highly 
sensitive indicator of surface soil moisture content. As a 

result, based on multiple airborne and other field cam-
paigns over the last two decades, passive microwave soil 
moisture retrieval algorithms have evolved to be reason-
ably robust and reliable. However, spaceborne radiometer 
measurements, including those by SMAP, suffer from 
coarse spatial resolution. The SMAP real-aperture anten-
na, with a 6 m-diameter lightweight deployable mesh re-
flector, can yield ~40-km resolution (3 dB) measurements 
at the elevation of the SMAP low-Earth orbit. Because of 
this, SMAP brightness temperature measurements and 
derived products are posted on a 36-km fixed Earth grid. 
The SMAP L2_SM_P is a soil moisture product based on 
brightness temperature measurements that are sensitive 
to soil moisture. Given the extensive heritage of L-band 
passive microwave soil moisture retrieval algorithms, this 
product is expected to be reliable and robust (better than 
0.04 cm3 cm–3 (1-sigma) accuracy) with about 40 km 
resolution, which is compatible with hydroclimatological 
applications.

Using the same antenna system but with synthetic aper-
ture radar (SAR) processing, the SMAP L-band radar pro-
vides backscatter cross-section measurements at much 
higher spatial resolution (~1 to 3 km over the outer 70% 
of the swath; measurements approach 3 to 30 km reso-
lution in the 30% area along the nadir flight track directly 
beneath the satellite). The high-resolution advantage of 
SAR is diminished for soil moisture sensing by the higher 
sensitivity of SAR to surface roughness and scattering 
by vegetation. Owing to these latter factors, SAR-based 
algorithms used for soil moisture retrieval have relatively 
more uncertainty. It is anticipated that the L2_SM_A will 
have a lower accuracy (up to 0.06 cm3 cm–3) over regions 
with VWC below ~3 kg m–2. Thus, the L2_SM_A soil 
moisture product has the advantage of increased spatial 
resolution but with less accuracy for regions with higher 
vegetation cover. Depending on the specific application 
and requirements for the levels of discrimination of soil 
moisture in its dynamic range, certain users may prefer 
to have soil moisture information at higher resolution and 
will accept the higher error and reduced sensitivity that 
may be present with the radar-only-based soil moisture 
products. 

Concurrent SMAP SAR and radiometer measurements 
and their respective advantages can be effectively com-
bined to derive soil moisture estimates with intermediate 
accuracy and at intermediate resolution (~9 km) that 
meet the SMAP project requirements (see next section). 
The SMAP L2_SM_AP soil moisture product uses the 
coarse resolution but sensitive (to soil moisture) passive 
radiometer measurements and the high resolution but 
relatively less sensitive active radar measurements to 
produce an intermediate resolution soil moisture product. 
The algorithm for this product uses the SAR backscat-
ter cross-section measurements to disaggregate the 
radiometer brightness temperatures. The spatially higher 
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resolution disaggregated brightness temperatures and the 
instrument radiometer brightness temperature fields are 
compatible in that their field averages are identical. The 
brightness temperature retrieval algorithm used for L2_
SM_P (with ancillary information of the right type and at 
the right scale [9 km]) is then utilized to retrieve intermedi-
ate-resolution soil moisture fields based on the disaggre-
gated brightness temperature fields. The L2_SM_AP ac-
curacy is equal to or better than 0.04 cm3 cm–3 (1-sigma) 
for regions with VWC below ~5 kg m–2. This soil moisture 
data product is unique to SMAP and is possible given that 
the SMAP radar and radiometer share the same antenna 
and data acquisition strategy. The resolution scale of this 
soil moisture product is 9 km, which is compatible with 
hydrometeorological applications.

II. Requirements and Validation Metrics

The SMAP Level 1 Requirements and Mission Success 
Criteria document specifies the SMAP baseline require-
ment for soil moisture as estimates of soil moisture in the 
top 5 cm of soil with an error of no greater than 0.04 cm3 
cm–3 volumetric (1-sigma). This accuracy must be met at 
10 km spatial resolution and with 3-day average intervals 
over the global land area (see Chapter 2 for more detail). 
The SMAP soil moisture data products suite must include 
a product that meets these requirements, which must 
be demonstrated within the cal/val (calibration/validation) 
phase of the project (the first 12 months of science data 
acquisition). The soil moisture accuracy requirement ap-
plies over global coverage but excludes regions of snow 
and ice, frozen ground, mountainous topography, open 
water, urban areas, and vegetation with water content 
greater than 5 kg m–2. The SMAP Project has a Calibra-
tion/Validation (Cal/Val) Plan (Chapter 7) that is designed 
to demonstrate that SMAP baseline products meet the re-
quirements over sites with diverse climate and land cover. 

The “1-sigma” specification on the accuracy requirement 
is a quadratic performance statistical metric. The root 
mean square error (RMSE) is such a statistical measure 
and it is the one adopted by the SMAP Project. Entekhabi 
et al. (2010) provide a detailed definition of this metric and 
relate it to time series correlation, bias, and other metrics 
that are often used to assess the accuracy of geophysical 
retrievals from satellite measurements with respect to true 
fields. Each of these metrics has advantages and disad-
vantages. Entekhabi et al. (2010) explore the relationship 
between RMSE and correlation metrics in the presence of 
biases in the mean as well as in the amplitude of fluctu-
ations (standard deviation) between estimated and true 
fields. They also introduce an approach for converting a 
requirement in an application product into a correspond-
ing requirement for soil moisture accuracy.

Even with the specification that RMSE is to be used to 
measure accuracy, there are still many important consid-

erations in evaluating this statistic. The most challenging 
issue with the validation is the representativeness of the 
in situ validation measurements. The validation measure-
ments themselves can only provide an estimate of the 
true surface soil moisture. There may be bias and am-
plitude errors in the estimates because of in situ sensor 
errors, but also, and perhaps more importantly, due to 
undersampling of the true field mean soil moisture based 
on a finite number of point samples. The heterogeneity in 
soil moisture fields, due to spatial variations in soil texture, 
in topography, in land cover, and in other factors, com-
monly results in undersampling of the true field. Hence, 
statistical errors are also a characteristic of the estimates 
to be considered ground truth. This is the problem of 
“upscaling,” which is defined further in Chapter 7. Valida-
tion of satellite retrievals with ground truth will include the 
upscaling error. If the errors in upscaling are considered 
independent of the retrieval algorithm errors, the RMSE of 
retrievals (with truth as reference) will additively include the 
upscaling error (RMSE of estimate ground truth with truth 
as reference).

Beyond upscaling, the RMSE has several other subtle 
issues that affect its use. If the true surface volumetric  
soil moisture (at a given scale) is defined as qtrue (actually 
the upscaling estimate of the truth) and the corresponding 
estimated retrieval is qest, then the root mean square error 
(RMSE) metric is simply 

RMSE = qest — qtrue( )2E[ ]√ (1)

where E [.] is the expectation or linear averaging opera-
tor. This metric quadratically penalizes deviations of the 
estimate with respect to the true soil moisture (in units 
of volumetric soil moisture) and is a compact and easily 
understood measure of estimation accuracy. This metric, 
however, is severely compromised if there are biases in 
either the mean or the amplitude of fluctuations in the 
retrieval. If it can be estimated reliably, the mean bias 

 
can easily be removed by defining the unbiased RMSE

     

that characterizes random errors.

The RMSE and the unbiased RMSE are related through

       

which implies RMSE ≥ |b| and underscores the short-
comings of the RMSE metric in the presence of mean 
bias. The bias in soil moisture may vary with season.  

RMSE2 = ubRMSE2 + b2 (3)

b = qest]—E  qtrueE[ ][

(2)
ubRMSE = qest —(qtrue(( ) 2E[ ]√ —E[qest —E[qtrue]))
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The validation of SMAP soil moisture products will report 
the unbiased ubRMSE and bias b separately for more 
complete diagnoses of the accuracy of the soil moisture 
products.

A final issue to consider is related to where and over 
what period the accuracy RMSE is applied. A validation 
site may be composed of one or more grid cells in the 
data product grid. The SMAP cal/val activity is based on 
a number of sites distributed across the globe covering 
representative climates and land covers. At each site the 
RMSE statistics may be estimated. The accuracy require-
ment implies that for the Ni validation sites (within the 
global land area excluding regions of snow and ice, frozen 
ground, mountainous topography, open water, urban 
areas, and vegetation with water content greater than  
5 kg m–2) for which validating in situ observations are 
available from verified sites, the SMAP surface (0–5 cm) 
soil moisture products must satisfy 

that is, the mean of the anomaly RMSE of the SMAP 
product (ubRMSE) across all Ni validation areas must be 
less than 0.04 cm3 cm–3. For the purposes of assess-
ing the accuracy of SMAP baseline products in meeting 
mission L1 requirements, the SMAP Science Definition 
Team has decided that data will be binned over 6-month 
time-domain periods globally within the SMAP mask to 
capture seasonal extremes.  

II. Radiometer-Only Soil Moisture Retrievals  
(L2/3_SM_P)

A. Overview

This section covers the two coarse spatial resolution 
soil moisture products which are based on the SMAP 
radiometer brightness temperatures: L2_SM_P, which is 
derived surface soil moisture in half-orbit format at 40-km 
resolution output on a fixed 36-km Equal-Area Scalable 
Earth–2 (EASE2) grid, and L3_SM_P, which is a daily 
global composite of the L2_SM_P surface soil moisture, 
also at 40-km resolution output on a fixed 36-km EASE2 
grid. Utilizing one or more of the soil moisture retrieval 
algorithms to be discussed later in the chapter, SMAP 
brightness temperatures are converted into an estimate of 
the 0–5 cm surface soil moisture in units of cm3/cm3. 

As mentioned earlier in this Handbook, the SMAP science 
objectives are based in part on the requirements of the 
hydrometeorology, hydroclimatology, and carbon flux 
communities. To resolve hydrometeorological water and 
energy flux processes and extend weather and flood 

ubRMSE(i)] ≤ 0.04 [cm3 cm–3][1
Ni

S
Ni

i=1

(4)

forecast skill, a spatial resolution of 10 km and temporal 
resolution of 3 days are required. To resolve hydroclima-
tological water and energy flux processes and extend 
climate and drought forecast skill, a spatial resolution of 
40 km and temporal resolution of 3 days are required.  
The SMAP L2/3_SM_P products will meet the needs of 
the hydroclimatology community. Although generated  
at a coarser 40-km spatial resolution, the L2/3_SM_P  
radiometer-based data products should still satisfy the  
0.04 cm3/cm3 volumetric soil moisture retrieval accuracy 
specified in the mission Level 1 requirements. Addition-
al details can be found in the SMAP Level 2 & 3 Soil 
Moisture (Passive) Algorithm Theoretical Basis Document 
(O’Neill et al. 2012).

B. Science Basis for Baseline Algorithm 

The microwave portion of the electromagnetic spectrum 
(wavelengths from a few centimeters to a meter) has long 
held the most promise for estimating surface soil mois-
ture remotely. Passive microwave sensors measure the 
natural thermal emission emanating from the soil surface. 
The intensity of this radiation depends on the dielectric 
properties and temperature of the target medium, which 
for the near surface soil layer is a function of the amount 
of moisture present. Low microwave frequencies (at  
L-band or ~1 GHz) offer additional advantages: (1) the 
atmosphere is almost completely transparent, providing 
all-weather sensing; (2) transmission of signals from the 
underlying soil is possible through sparse and moderate 
vegetation layers (up to at least 5 kg/m2 of vegetation wa-
ter content); and (3) measurement is independent of solar 
illumination which allows for day and night observations.

At microwave frequencies, the intensity of the observed 
emission is proportional to the product of the temperature 
and emissivity of the surface (Rayleigh-Jeans approxi-
mation). This product is commonly called the brightness 
temperature (TB). If the microwave sensor is in orbit above 
the Earth, the observed TB is a combination of the emitted 
energy from the soil as attenuated by any overlying vege-
tation, the emission from the vegetation, the downwelling 
atmospheric emission and cosmic background emission 
as reflected by the surface and attenuated by the vegeta-
tion, and the upwelling atmospheric emission (Figure 29).

At L-band frequencies, the atmosphere is essentially 
transparent, with the atmospheric transmissivity τatm ≈ 1. 
The cosmic radiation at the radio astronomy band (Tsky ) 
is on the order of 2.7 K. The atmospheric emission is also 
small, about 2.5 K. These small atmospheric contribu-
tions will be accounted for in the L1B_TB ATBD, since 
the primary inputs to the radiometer-derived soil moisture 
retrieval process described in this chapter are atmospheri-
cally corrected surface brightness temperatures.
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Retrieval of soil moisture from SMAP surface TB observa-
tions is based on a well-known approximation to the ra-
diative transfer equation, commonly known in the passive 
microwave soil moisture community as the tau-omega 
model. A layer of vegetation over a soil attenuates the 
emission of the soil and adds to the total radiative flux  
with its own emission. Assuming that scattering within  
the vegetation is negligible at L-band frequencies, the  
vegetation may be treated mainly as an absorbing layer.  
A model following this approach to describe the bright-
ness temperature of a weakly scattering layer above a 
semi-infinite medium was developed by Basharinov and 
Shutko (1975) and described in Ulaby et al. (1982). The 
equation includes emission components from the soil and 
the overlying vegetation canopy (Jackson and Schmugge 
1991):

Atmosphere

τatm ~1, TBatm

Canopy Layer

τ , w, TC

Soil Layer

eS , TS

TBatm
TBatm

TC
TC

TS

Tsky

TBobs

q

Figure 29. Contributions to the observed brightness temperature TB from 
orbit. From SMOS ATBD (Kerr et al. 2006).

TBp = Tsepexp(–τpsecq) + Tc(1–wp) 

[1–exp((–τpsecq)][1+rpexp(–τpsecq)]
(5)

where the subscript p refers to polarization (V or H), Ts is 
the soil effective temperature, Tc is the vegetation tempera-
ture, τp is the nadir vegetation opacity, wp is the vegetation 
single scattering albedo, and rp is the rough soil reflectivity. 
The reflectivity is related to the emissivity (ep) by ep =  
(1 – rp), and wp, rp, and ep are values at the SMAP look 
angle of q = 40°. The transmissivity γ of the overlying 
canopy layer is γ = exp(–τp sec q). Equation (5) assumes 
that vegetation multiple scattering and reflection at the 
vegetation–air interface are negligible. The surface rough-
ness effect is modeled as rp = rp smooth exp (–h cos2 q) 
where the parameter h is assumed linearly related to the 
root mean square surface height (Choudhury et al. 1979; 
Wang 1983). Nadir vegetation opacity is related to the total 
columnar vegetation water content (VWC, in  

kg/m2) by τp = bp*VWC with the coefficient bp dependent 
on vegetation type and microwave frequency (and proba-
bly polarization) (Jackson and Schmugge 1991).

If the air, vegetation, and near-surface soil are in thermal 
equilibrium, as is approximately the case near 6:00 AM 
local time (the time of the SMAP descending pass), then 
Tc is approximately equal to Ts and the two temperatures 
can be replaced by a single effective temperature (Teff). 
Soil moisture can then be estimated from rp smooth using 
the Fresnel and dielectric-soil moisture relationships.

The smooth surface reflectivity rp smooth is defined by the 
Fresnel equations, which describe the reflection of an 
electromagnetic wave by a smooth dielectric boundary.  
At horizontal polarization, the electric field of the wave is 
oriented parallel to the reflecting surface and perpendicu-
lar to the direction of propagation. At vertical polarization, 
the electric field of the wave is on the incidence angle 
plane, which is spanned by two vectors corresponding to 
the surface normal and the direction of wave propagation. 
In the Fresnel equations below, q is the SMAP incidence 
angle of 40° and ε is the complex dielectric constant of 
the soil layer:  

rH(q) =
cosq – ε – sin2 q√
cosq + ε – sin2 q√

2

rV(q) =
εcosq – ε – sin2 q√
εcosq + ε – sin2 q√

2

(6)

(7)

In terms of dielectric properties, there is a large con-
trast between liquid water (real part of dielectric εr ~ 80) 
and dry soil (εr ~ 5). As soil moisture increases, the soil 
dielectric constant increases. This leads to an increase in 
soil reflectivity or a decrease in soil emissivity (1 – rp). Note 
that low dielectric constant is not uniquely associated 
with dry soil. Frozen soil, independent of water content, 
has a similar dielectric constant to dry soil. Thus, a freeze/
thaw flag is needed to resolve this ambiguity. As TB is 
proportional to emissivity for a given surface soil tem-
perature, TB decreases in response to an increase in soil 
moisture. It is this relationship between soil moisture and 
soil dielectric constant (and hence microwave emissivity 
and brightness temperature) that forms the physical basis 
of passive remote sensing of soil moisture. Given SMAP 
observations of TB and information on Teff, h, τp, and wp 
from ancillary sources (section VI) and using single-chan-
nel or multichannel algorithm approaches (later in this 
chapter), Eq. (5) can be solved for the soil reflectivity rp, 
and Eq. (6) or (7) can be solved for the soil dielectric ε. 
Soil moisture can then be estimated using one of several 
dielectric models and ancillary knowledge of soil texture. 
SMAP production software will include the option of using 
the dielectric models of Mironov et al. 2009, Dobson et al. 
1985, or Wang and Schmugge 1980.
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C. Rationale for the Use of L-Band 6 AM Data 

Within the microwave portion of the electromagnetic 
spectrum, emission from soil at L-band frequencies can 
penetrate through greater amounts of vegetation than  
at higher frequencies. Figure 30 shows microwave trans-
missivity as a function of increasing biomass at L-band 
(1.4 GHz), C-band (6 GHz), and X-band (10 GHz) frequen-
cies, based upon modeling. The results show that L-band 
frequencies have a significant advantage over the C- and 
X-band frequencies (and higher) provided by current sat-
ellite instruments such as AMSR-E and WindSat, and help 
explain why both SMOS and SMAP are utilizing L-band 
sensors in estimating soil moisture globally over the widest 
possible vegetation conditions. Another advantage of 
measuring soil moisture at L-band is that the microwave 
emission originates from deeper in the soil (typically 5 cm 
or so), whereas C- and X-band emissions originate mainly 
from the top 1 cm or less of the soil (Figure 31).  

Faraday rotation will become more significant. Thus, 
L-band frequency is an optimal choice for orbiting satellite 
radiometers with balanced vegetation and ionospheric 
effects. Within the L-band, radiometric measurements 
could be significantly degraded by man-made and ga-
lactic noise. Since there is a protected band at L-band at 
1.400−1.427 GHz that is allocated exclusively for radio 
astronomy use, the SMAP radiometer operates in this 
band.
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Figure 30. Vegetation transmissivity to soil emission at L-band frequen-
cies (1.4 GHz) is much higher than at C- (6 GHz) or X-band (10 GHz) 
frequencies. (Adapted from Ulaby et al. 1996.)  

Although the above arguments support the use of low 
frequencies, there is, however, a lower frequency limit for 
optimal TB measurements for soil moisture. The micro-
wave observations made by a satellite radiometer will 
be affected by ionospheric Faraday rotation effect and 
emission. Faraday rotation is a phenomenon in which the 
polarization vector of an electromagnetic wave rotates 
as the wave propagates through the ionospheric plas-
ma in the presence of the Earth’s static magnetic field. 
The phenomenon is a concern to SMAP because the 
polarization rotation increases as the square of wave-
length. At frequencies lower than L-band, the ionospheric 

The decision to place SMAP into a sun-synchronous 
6:00 AM / 6:00 PM orbit is based on a number of science 
issues relevant to the L2_SM_P product (Fagerlund 
et al. 1970; Jackson and Kimball 2009). Faraday rota-
tion depends on the total electron content (TEC) in the 
ionosphere. If the Faraday rotation is uncorrected, the 
SMAP polarized (H and V) radiometer measurements will 
contain errors that translate to soil moisture error. The TEC 
(or Faraday rotation) varies greatly during the day, reaching 
a maximum during the afternoon and a minimum in the 
pre-dawn hours. By using TB observations acquired near 
6:00 AM local solar time as the primary input to the L2_
SM_P product, the adverse impacts of Faraday rotation 
are minimized. Faraday rotation correction to SMAP TB is 
described in the L1B_TB ATBD.
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At 6:00 AM, the vertical profiles of soil temperature and 
soil dielectric properties are likely to be more uniform 
(Basharinov and Shutko 1975) than at other times of the 
day (Figure 32). This early morning condition will minimize 
the difference between canopy and soil temperatures and 
thermal differences between land cover types within a pix-

Figure 32. Soil temperature as a function of time based on June 2004 
Oklahoma Mesonet data: (a) vertical profiles for a sod-covered site and 
(b) the mean soil temperatures for bare soil (TB05 at 5 cm below the 
surface, TB10 at 10 cm below the surface), and sod (TS05, TS10). The 

shaded region identifies the period of the day when these effects result 
in less than 1 °C difference among the four temperatures (T. Holmes, 
personal communication). 

el (Figure 33). These factors help to minimize soil moisture 
retrieval errors originating from the use of a single effective 
temperature to represent the near surface soil and canopy 
temperatures. This same effective temperature can be 
used as the open-water temperature in the water-body 
correction to TB that will be discussed in section VI.
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As will be discussed in the next section, the current 
approach to generation of the baseline L2_SM_P product 
will be restricted to input data from the 6:00 AM descend-
ing passes because of the thermal equilibrium assump-
tion and near-uniform thermal conditions of surface soil 
layers and overlying vegetation in the early morning hours. 
Accurate soil moisture retrievals using data from 6:00 PM 
ascending passes may require use of a land surface mod-
el and will be generated as part of the L4_SM product 
(see ATBD for L4_SM). 

D. Soil Moisture Retrieval Process 

From a broad perspective, there are five steps involved in 
extracting soil moisture using passive microwave remote 
sensing. These steps are normalizing brightness tempera-
ture to emissivity, removing the effects of vegetation, ac-
counting for the effects of soil surface roughness, relating 
the emissivity measurement to soil dielectric properties, 
and finally relating the dielectric properties to soil moisture.  
Decades of research by the passive microwave soil mois-
ture community have resulted in a number of viable soil 
moisture retrieval algorithms that can be used with SMAP 
TB data. ESA’s SMOS mission currently flies an aperture 
synthesis L-band radiometer which produces TB data at 
multiple incidence angles over the same ground location. 
The baseline SMOS retrieval algorithm is based on the 
tau-omega model described earlier, but utilizes the SMOS 
multiple incidence angle capability to retrieve soil moisture.  
SMAP retrievals will also be based on the tau-omega 
model, but will use the constant incidence angle TB data 
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Figure 33. Schematic showing diurnal variation in temperature and ther-
mal crossover times at approximately 6:00 AM / 6:00 PM local time for 
various broad classes of land surface covers. (Modified from Fagerlund 
et al. 1970.)

produced by the SMAP conically-scanning radiometer.  
Other needed parameters in the retrieval will be obtained 
as ancillary data.

For the SMAP L2_SM_P product, four soil moisture re-
trieval algorithms are currently being evaluated:

•	 Single-channel algorithm at H polarization (baseline)  
(SCA-H)

•	 Single-channel algorithm at V polarization (SCA-V)

•	 Dual-channel algorithm (DCA)

•	 Microwave Polarization Ratio Algorithm (MPRA) 

Figure 34 illustrates the conceptual process used in 
retrieving soil moisture from SMAP radiometer brightness 
temperature measurements. The process begins with the 
ingestion and merging of the fore- and aft-look gridded 
brightness temperature data from the SMAP L1C_TB 
product. It then identifies grid cells where the TB quality 
and surface conditions (brown diamonds in the figure) are 
considered favorable for soil moisture retrieval and sets 
the retrieval quality flag accordingly. The observed TBs are 
then corrected for the presence of standing water prior 
to being converted into soil moisture estimates by the 
baseline retrieval algorithm.

In order for soil moisture to be retrieved accurately, a vari-
ety of global static and dynamic ancillary data are required 
(section VI). Static ancillary data do not change during 
the mission, while dynamic ancillary data require periodic 
updates in time frames ranging from seasonally to daily. 
Static data include parameters such as permanent masks 
(land/water/forest/urban/mountain), the grid cell average 
elevation and slope derived from a DEM, permanent 
open water fraction, and soils information (primarily sand 
and clay fraction). The dynamic ancillary data include 
land cover, surface roughness, precipitation, vegetation 
parameters, and effective soil temperatures. Measure-
ments from the SMAP radar will be the primary source 
of information on open water fraction and frozen ground, 
supplemented by water information from a MODIS-de-
rived surface water data base and temperature informa-
tion from the GMAO model used in L4_SM. Ancillary data 
will also be employed to set flags which help to determine 
either specific aspects of the processing or the quality of 
the retrievals. All input data to the L2_SM_P process are 
pre-mapped to the 36-km EASE2 grid. 

The SMAP L2_SM_P product contains two 16-bit integer 
data flags that enable users to examine (a) the surface 
conditions of a grid cell and (b) the quality of soil moisture 
estimate when retrieval is attempted. 

60°C
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a. surface_flag: The surface_flag field is a 16-bit integer 
field whose binary representation consists of bits that 
indicate the presence or absence of certain surface con-
ditions at a grid cell. Each surface condition is numerically 
compared against two non-negative thresholds: T1 and 
T2, where T1 < T2. When a surface condition is found 
to be below T1, retrieval is attempted and flagged for 
recommended quality. Between T1 and T2, retrieval is still 
attempted but flagged for uncertain quality. Above T2, 
retrieval is skipped. The definitions of surface conditions 
and their thresholds are included in the algorithm ATBD 
and data product guides that are accessible along with 
the data products at the DAACs. The updated documents 
will include changes to the flag definitions and to their 
thresholds.

Water fraction
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DEM statistics
Snow fraction
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Skip Retrieval and Set  
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Figure 34. A simplified schematic of the processing flow used to produce the L2_SM_P products.

b. retrieval_qual_flag: The retrieval_qual_flag field is a 
16-bit integer field whose binary representation consists 
of bits that indicate whether retrieval is performed or not 
at a given grid cell. When retrieval is performed, it con-
tains additional bits to further indicate the exit status and 
quality of the retrieval. A summary of bit definition of the 
retrieval_qual_flag field is listed in Table 9.

At the 40-km footprint resolution scale of the SMAP 
radiometer, a significant percentage of footprints within 
the SMAP land mask will contain some amount of open 
fresh water due to the presence of lakes, rivers, wetlands, 
and transient flooding. It is assumed that all ocean pixels 
will be masked out using the SMAP ocean/land mask.  
For soil moisture retrieval purposes, the presence of open 
water within the radiometer footprint (IFOV) is undesirable 
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temperature of the emitting layer. The derived emissivity is 
corrected for vegetation and surface roughness to obtain 
the soil reflectivity. The Fresnel equation is then used to 
determine the dielectric constant. Finally, a dielectric mix-
ing model is used to obtain the soil moisture. Additional 
details on these steps follow.

At the L-band frequency used by SMAP, the brightness 
temperature of the land surface is proportional to its 
emissivity (e) multiplied by its physical temperature (T ).  
It is typically assumed that the temperatures of the soil 
and the vegetation are the same, especially at the SMAP 
overpass time of 6 AM. The microwave emissivity at the 
top of the soil surface or vegetation canopy is given by 
(the polarization subscript p is suppressed in the following 
equations): 

        
      
If the physical temperature is estimated independently, 
emissivity can be determined. SMAP will use GMAO mod-
eled temperatures to represent the temperature of the 
near surface soil layer (see “SMAP Ancillary Data Report: 
Surface Temperature,” JPL D-53064). The emissivity 
retrieved above is that of the soil as modified by any over-
lying vegetation and surface roughness. In the presence 
of vegetation, the observed emissivity is a composite of 
the soil and vegetation. To retrieve soil water content, it 
is necessary to isolate the soil surface emissivity (esurf ).  
Following Jackson and Schmugge (1991), the emissivity 
can be represented by:

       
Both the single scattering albedo (w) and the one-way 
transmissivity of the canopy (γ) are dependent upon the 
vegetation structure, polarization, and frequency. The 
transmissivity is a function of the optical depth (τ) of the 
vegetation canopy where γ = exp(-τ secq). At L-band, 
the single scattering albedo tends to be very small, and 
sometimes is assumed to be zero in order to reduce 
dimensionality for computational purposes. For SMAP,  

Bit

0 

1 

2 

3–15

Table 9. Retrieval_qual_flag bit information.

Bit Value and Interpretation

Recommended Quality 

Retrieval Attempted

Retrieval Successful

Undefined

0: Retrieval has recommended quality

1: Retrieval does not have recommended quality

0: Retrieval was attempted

1: Retrieval was skipped

0: Retrieval was successful

1: Retrieval was not successful

0 (not used in L2_SM_P)

Retrieval Information

since it dramatically lowers the brightness temperature 
and results in anomalously high retrieved soil moisture for 
that grid cell if soil moisture is retrieved without knowledge 
of the presence of open water. This results in a bias that 
degrades the overall soil moisture retrieval accuracy. It 
is therefore important to correct the SMAP Level 1 TB 
observations for the presence of water, to the extent fea-
sible, prior to using them as inputs to the L2_SM_P soil 
moisture retrieval. Fortunately, this bias can be corrected, 
especially when it occurs at dawn near inland water/
land boundaries where the temperature of water can be 
reasonably approximated as the temperature of land (as 
shown in Figure 33).   

The procedure to correct for water TB is quite simple.  
Given a mixture of land and water within the antenna 
IFOV, the observed TB is an areal weighted sum of the  
TB contributions from the water and from the land: 

       
where α denotes the areal fraction of water within the an-
tenna IFOV, and TBwater denotes the TB emission from wa-
ter computed from a theoretical model (for example, the 
Klein-Swift model) (Klein and Swift 1977) with an estimat-
ed physical temperature obtained from ancillary sources. 
At the 6 AM SMAP overpass time, the temperature of 
the water is approximately the same as the temperature 
of the surface soil layer, so the same ancillary tempera-
ture data can be used for both. Once α and TBwater are 
known, TBland can be solved for and then used to retrieve 
soil moisture in the non-open water part of the IFOV.

E. Baseline Algorithm

In the single-channel algorithm (SCA) (Jackson 1993), 
horizontally polarized (H-pol) TB data are traditionally used 
due to their sensitivity to soil moisture, but the same al-
gorithm can also be applied to V polarization TB. The use 
of H-pol TB with the SCA is the current SMAP baseline 
algorithm. In this approach, brightness temperatures are 
converted to emissivity using a surrogate for the physical 

(8)

TB

T
e = (9)

e = [1–w][1–γ][1+(1–esurf)γ] + esurf γ (10)

TBIFOV = αTBwater + (1–α)TBland



SMAP HANDBOOK56

the capability for a nonzero w will be retained. Substituting 
γ into Eq. 10 and rearranging yields

                        

 
The vegetation optical depth is dependent upon the vege-
tation water content (VWC). In studies reported in Jackson 
and Schmugge (1991), it was found that the following 
functional relationship between the optical depth and 
vegetation water content could be applied:

        
where b is a proportionality value that depends on both 
the vegetation structure and the microwave frequency.  
Since b is related to the structure of the overlying veg-
etation, it is likely that b will also vary with microwave 
polarization. The variation of the b parameter with polar-
ization is currently being studied by the SMAP team — it is 
expected that analysis of SMOS data and other field data 
will resolve whether a polarization dependence is needed 
to improve soil moisture retrieval accuracy.

For SMAP implementation of the SCA, values of b and w 
will be provided by means of a land cover look-up table 
that is currently under review (a very preliminary version 
of this table can be found in the L2_SM_P ATBD, which 
will be updated prior to launch). The baseline approach to 
estimating vegetation water content utilizes a set of land 
cover–based equations to estimate the combined foliage 
and stem VWC from values of the Normalized Difference 
Vegetation Index (NDVI) (an index derived from visible-near 
infrared reflectance data from the EOS MODIS instruments 
now and the NPP/JPSS VIIRS instrument in the SMAP 
time frame) (see additional details and Eq. 18 in O’Neill 
et al. 2012). A 10-year MODIS-based NDVI vegetation 
climatology has been used in pre-launch studies for 
vegetation correction which results in robust and stable 
soil moisture retrievals. This climatology will be updated 
to cover 14 years (through 2013) by the time of the SMAP 
launch. Methods are currently under evaluation to tie this 
long-term climatology to real-year NDVI conditions for 
more accurate retrievals under anomalous conditions.

The emissivity that results from the vegetation correction 
is that of the soil surface, including any effects of surface 
roughness. These roughness effects must be removed in 
order to determine the smooth surface soil emissivity (esoil) 
which is required for the Fresnel equation inversion. One 
approach to removing this effect is a model described in 
Choudhury et al. (1979) that yields the bare smooth soil 
emissivity:

      

Some studies drop the cos2 q term or change it to cos q 
to avoid overcorrecting for roughness. The parameter h is 

esurf = 
e–1+ γ2 + w – wγ2

γ2 + wγ – wγ2
(11)

τ = b*VWC (12)

esoil = 1 – [1 – esurf] exp[hcos2q] (13)

dependent on the polarization, frequency, and geometric 
properties of the soil surface and is related to the surface 
height standard deviation s. h values for different land 
cover types will be included in the look-up table used in 
SMAP retrievals (O’Neill et al. 2012). 

Emissivity is related to the dielectric properties (ε) of the 
soil and the viewing or incidence angle (q). For ease of 
computational inversion, it can be assumed that the real 
component (εr) of the dielectric constant provides a good 
approximation of the complex dielectric constant; how- 
ever, the more complex formulation can also utilized,  
and both approaches produce very similar results. The  
Fresnel equations link the dielectric constant to emissiv-
ity — for horizontal (H) polarization (Eq. 6 rewritten for 
emissivity): 

                         
 

and for vertical (V) polarization (Eq. 7 rewritten for  
emissivity):

              
 

The dielectric constant of soil is a composite of the values 
of its components — air, soil, and water, which have 
greatly different values. In the final step of the soil moisture 
retrieval process, one of three dielectric mixing models 
is used to relate the estimated dielectric constant to the 
amount of soil moisture (Mironov et al. 2009; Dobson 
et al. 1985; and Wang and Schmugge 1980). The SMAP 
algorithm team is currently evaluating the relative merits 
of these dielectric models and their impact on overall 
soil moisture retrieval accuracy. The SMAP processing 
software will retain coding for all three dielectric model 
options.

In terms of soil moisture retrieval performance, the Hydros 
OSSE (Crow et al. 2005) revealed that the SCA could 
produce biased retrievals based on linear VWC correction 
aggregated from high-resolution vegetation data. How-
ever, two relatively simple approaches were developed to 
create an effective VWC using nonlinear aggregation that 
helps to reduce the bias and overall RMSE in retrieved soil 
moisture (O’Neill et al. 2006; Zhan et al. 2008). Figure 35 
demonstrates the effectiveness of these nonlinear veg-
etation aggregation methods in improving the accuracy 
of retrieved soil moisture, especially in areas with heavier 
vegetation.

F. Alternate Algorithms

The Dual-Channel Algorithm (DCA) is an extension of 
the SCA described in the previous section — it uses both 
H-polarized and V-polarized TB observations to simultane-
ously retrieve soil moisture and VWC (Njoku and Li 1999). 

eH(q) = 1 –
cosq – εr – sin2 q√
cosq + εr – sin2 q√

2

(14)

(15)eV(q) = 1 –
εrcosq – εr – sin2 q√
εrcosq + εr – sin2 q√

2
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The inversion mechanism of the DCA starts with feeding 
the tau-omega model (Eq. 5) with initial guesses of soil 
moisture and VWC. The quantities are then adjusted 
iteratively until the difference between the computed and 
observed TB observations is minimized in a least square 
sense. Similar to the SCA, estimates of model parameters 
(e.g., surface temperature, surface roughness, and veg-
etation single scattering albedo) must be provided using 
ancillary datasets in the inversion process. The DCA has 
been used with reasonable success in a number of cases, 
including the 2007 CLASIC field campaign conducted in 
Oklahoma, USA (Yueh et al. 2008).

The ability of the DCA to simultaneously estimate two 
geophysical parameters may come with a penalty. While 
the additional channel allows for estimation of VWC, it 
also brings in additional TB errors (uncorrelated between V 
and H channels) that may adversely affect retrieval accu-
racy. Also, an assumption implicit in this algorithm is that 
the optical depth is identical for both polarizations, which 
is not likely to be true for structured vegetation. Exactly 
which effect outweighs the other is under investigation.

The Microwave Polarization Ratio Algorithm (MPRA) is 
based on the Land Parameter Retrieval Model (LPRM) 

(Owe et al. 2001). The LPRM is an index-based retrieval 
model that uses dual polarization channels at a single low 
microwave frequency (typically C- or X-band) to derive soil 
moisture and vegetation optical depth. As implemented on 
multifrequency satellites such as AMSR-E, it also uses the 
Ka-band V-polarized channel to retrieve physical tempera-
ture of the surface. Only a few studies (de Jeu et al. 2009) 
have examined the applicability of this model at L-band 
frequencies, although analysis of SMOS data with LPRM 
is currently underway [R. de Jeu, personal communica-
tion, 2011]. Because there are no Ka-band V-polarized TB 
observations available from the SMAP instruments, sur-
face temperature will be obtained using ancillary datasets 
as with the other L2_SM_P algorithms.

In the MPRA, the radiative transfer model operates on two 
assumptions: (1) the soil and canopy temperatures are 
considered equal (T), and (2) the vegetation transmissivity 
(γ) and the single-scattering albedo (w) are the same  
for both H and V polarizations. If es is the soil emissivity,  
the TB can be expressed by the tau-omega model  
(Equation 5) with TC = TS = T:
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Figure 35. Improvement in simulated Hydros soil moisture retrieval  
error using a simple effective VWC correction with the SCA algorithm for  

existing vegetation (1X) and for artificially increased simulated vegeta-
tion amounts (3X) (O’Neill et al. 2006).

(16)

Simulated Hydros Soil Moisture Retrieval Error

TB = esγT+(1–w)(1–γ)T+γ(1–es)(1–w)(1–γ)T
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The single scattering albedo w represents the loss of 
energy in the canopy and is assumed by MPRA to be 
constant globally (such as w = 0.05), in contrast to the 
other L2_SM_P algorithms where a nonzero w is as-
sumed to be a function of land cover type and is input as 
an ancillary parameter.

The Microwave Polarization Difference Index (MPDI) and 
the observed emissivity (eH and eV) are used in MPRA to 
derive the vegetation optical depth (Meesters et al. 2005), 
which is used to calculate the transmissivity (γ). The MPDI 
and vegetation optical depth are calculated as follows:

 

where a = 0.5 * [(eV – eH) / MPDI – eV – eH] and  
d = 0.5 * w / (1 – w).

With this set of equations, soil moisture is retrieved in an 
optimization routine that minimizes the error between the 
modeled and observed H-polarized brightness tempera-
tures. The vegetation optical depth at this optimized soil 
moisture value is an additional retrieval result.

G. Algorithm Performance

One measure of algorithm performance is determin-
ing the accuracy of the retrieved soil moisture in a root 
square sense. Different algorithms respond differently to 
uncertainty in a given model / ancillary parameter. One 
test performed by the SMAP team involved retrieving soil 
moisture from one year of global simulated SMAP bright-

ness temperatures (GloSim1), varying one parameter in 
turn while keeping the other parameters constant with no 
error. Table 10 lists the error in retrieved volumetric soil 
moisture in cm3/cm3 for each of the four SMAP L2_SM_P 
candidate algorithms over the full range of soil and veg-
etation water content (VWC) conditions encountered in 
the global simulation. The first column lists the parameter 
and its assigned error. Across this full range of conditions, 
with error only in one parameter at a time, all of the algo-
rithms appear to perform to acceptable levels in retrieving 
soil moisture (last line in Table 10 is Total RSS).

A more stringent simulation is to assign some error to all 
parameters simultaneously and then assess the accuracy 
in retrieved soil moisture. Figure 36 shows the results 
obtained when the indicated errors were applied to the 
indicated parameters and soil moisture was retrieved for 
one year and compared to the “true” soil moisture. The 
soil moisture retrieval error was plotted for all of the algo-
rithms as a function of VWC. As expected, retrieval errors 
went up as the vegetation increased. The baseline sin-
gle-channel H pol algorithm shows the smallest error and 
meets the required accuracy even at the highest VWC 
bin that is included in the accuracy statistics. Results 
for the SCA-V pol are similar. However, the RMSE for 
the DCA and MPRA options exceed the target accuracy 
of 0.04 cm3/cm3 when VWC >~ 4 kg/m2 based on the 
simulated data. When the RMSE is averaged across all 
of the VWC bins, all retrieval algorithm options meet the 
required accuracy. For this simulation, parameters such 
as b and h were assumed to be the same for both H and 
V polarization. This assumption is being re-examined as 
new information is obtained (through analysis of SMOS 
and other field data) regarding quantification of any polar-
ization dependence of any of the algorithm parameters.

Model/Ancillary Uncertainty

Table 10. Simulated retrieval error by parameter for each algorithm.     

Option 1

Gridding + aggregation

5% h

5% omega

5% sand fraction

5% clay fraction

2K T5

5% VWC

10% VWC

5% water fraction

10% water fraction

20% water fraction

1.3 K TB

Total RSS Error

Baseline Option 2 Option 3

Single Pol (H)
RMSE (cm3/cm3)

Single Pol (V)
RMSE (cm3/cm3)

Dual Pol
RMSE (cm3/cm3)

MPRA
RMSE (cm3/cm3)

0.0061

0.0065

0.0063

0.0073

0.0062

0.0087

0.0066

0.0072

0.0061

0.0061

0.0061

0.0068

0.0203

0.0058

0.0060

0.0061

0.0070

0.0059

0.0100

0.0061

0.0065

0.0059

0.0058

0.0058

0.0067

0.0201

0.0059

0.0060

0.0062

0.0070

0.0059

0.0112

   —

   —

0.0059

0.0059

0.0059

0.0083

0.0205

0.0058

0.0058

0.0061

0.0070

0.0059

0.0120

   —

   —

0.0058

0.0058

0.0058

0.0095

0.0214

(17)

(18)τ = cosq ln [ad +    (ad)2 + a + 1]√

MPDI = 
TBV – TBH

TBV + TBH
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Figure 36.  Simulated error performance of all L2_SM_P candidate 
retrieval algorithms given the indicated RMSE in the algorithm input 
parameters listed above.
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Microwave observations from the SMOS mission have 
been reprocessed to simulate SMAP observations at a 
constant incidence angle of 40° (details of this reprocess-
ing are explained in the L2_SM_P ATBD) (O’Neill et al. 
2012). This procedure provides a brightness temperature 
dataset that closely matches the observations that will 
be provided by the SMAP radiometer. SMOS brightness 
temperatures provide a global real-world, rather than 
simulated, input for evaluating the different SMAP radiom-
eter-only soil moisture algorithm alternatives. Initial results 

using the SCA with a SMOS-based simulated SMAP TB 
dataset and MODIS-based vegetation (NDVI) climatology 
data are presented here. For this preliminary analysis, the 
roughness parameter (h), vegetation parameter (b), and 
the single scattering albedo (w) were assumed constant 
for all land cover classes (h = 0.1, b = 0.08, w = 0.05). 
In subsequent analyses, these parameters will be further 
refined for different land cover classes as information 
becomes available. Figure 37 shows the average soil 
moisture estimated using the SCA algorithm with the 
SMAP-simulated SMOS TB data for the ascending orbits 
(overpass time of 6 AM) for July 1–10, 2011. The soil 
moisture spatial patterns are consistent with geograph-
ical features. Soil moisture retrieved using the SCA with 
SMOS-simulated SMAP TB for January 2010–May 2013 
was compared to data from in situ soil moisture networks 
in USDA ARS watersheds that have previously been 
extensively used in satellite-based soil moisture validation 
(Jackson et al., 2010, 2012). Figure 38 shows the com-
parison between observed and estimated soil moisture 
over the Little River (LR), Little Washita (LW), Walnut Gulch 
(WG), and Reynolds Creek (RC) watersheds for SMOS 
ascending orbits (overpass time of 6 AM). Table 11 shows 
the statistical performance of the SCA algorithm over 
these watersheds. Despite the presence of two obvi-
ous outliers which did not get thrown out during routine 
flagging, the overall RMSE and the individual watershed 
ubRMSEs meet mission requirements. All of these results 
are encouraging for the potential of SMAP to meet its 
required soil moisture accuracy of 0.04 cm3/cm3 for the 
L2_SM_P product. 

H. Level 3 Radiometer-Only Soil Moisture Product 
(L3_SM_P)

The L3_SM_P product is a daily global product. To gen-
erate the product, individual L2_SM_P half-orbit granules 
acquired over one day are composited to produce a daily 
multi-orbit global map of retrieved soil moisture.

The L2_SM_P swaths overlap poleward of approximately 
±65° latitude. Where overlap occurs, three options are 
considered for compositing multiple data points at a given 
grid cell:

Watershed

Table 11. Statistical summary of the SMOS/SMAP/SCA retrieval algorithm results over USDA watersheds for SMOS ascending orbits (6 PM overpass 
time), January 2010–May 2013.  

RMSE

Little River, GA

Little Washita, OK

Walnut Gulch, AZ

Reynolds Creek, ID

Overall

–0.003

–0.028

–0.008

–0.045

–0.016

Count R Bias ubRMSE

247

245

231

74

797

0.028

0.047

0.025

0.050

0.037

0.767

0.841

0.789

0.219

0.745

0.028

0.037

0.024

0.022

0.033
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Figure 38. Comparison of estimated soil moisture using SMOS-simulated 
SMAP TB with in situ observations over USDA ARS watershed sites for 
ascending orbits (6 AM overpass time) for January 2010–May 2013.  
Two outliers can be explained: on 2/25/2011, the surface temperatures 
were very low and there is likely some wet snow in the SMOS footprint 
that ECMWF did not predict; on 9/16/2011, there is an active rain event 
that ECMWF did not predict (so these two points did not get thrown out 
during routine flagging). 

1. Use the most recent (or “last-in”) data point

2. Take the average of all data points within the grid cell

3. Choose the data point observed closest to 6:00 AM 
local solar time

The current approach for the L3_SM_P product is to use 
the nearest 6:00 AM local solar time (LST) criterion to 
perform Level 3 compositing. According to this criterion, 
for a given grid cell, an L2 data point acquired closest 
to 6:00 AM local solar time will make its way to the final 
Level 3 granule; other “late-coming” L2 data points falling 
into the same grid cell will be ignored. For a given granule 
whose time stamp (yyyy-mm-ddThh:mm:ss) is expressed 
in UTC, only the hh:mm:ss part is converted into local 
solar time. For example:

75°N

120°W150°W180°W 90°W 60°W 30°W 0 30°E 60°E 90°E 120°E 150°E 180°E

90°N

60°N

45°N

30°N
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30°S

45°S
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0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40

Figure 37. Average estimated soil moisture using the single-channel algorithm (SCA) for SMOS ascending orbits for the period of July 1–10, 2011.  

UTC Time Stamp

2011-05-01T23: 
19:59

Longitude Local Solar Time

60E 23:19:59 + (60/15) hrs =  
03:19:59
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LW
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solar time at the equator. Note that this is also  
the conventional way to produce Level 3 products in  
similar missions and is convenient to users interested in 
global applications. Figure 39 shows an example of the  
L3_SM_P soil moisture output for one day’s worth of sim-
ulated SMAP descending orbits (6 AM) globally and over 
just the continental U. S. (CONUS). 

The local solar time 03:19:59 is then compared with 
06:00:00 in Level 3 processing for 2011-05-01 to de-
termine if the swath is acquired closest to 6:00 AM local 
solar time. If so, that data point (and only that data point) 
will go to the final Level 3 granule. Under this convention, 
an L3 composite for 2011-05-01 has all Level 2 granules 
acquired within 24 hours of 2011-05-01 UTC and  
Level 2 granules appearing at 2011-05-02 6:00 AM local 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Figure 39. Simulation of L3_SM_P retrieved soil moisture in cm3/cm3.  
This example is based on the single-channel algorithm operating on 

H-polarized TB observations simulated using geophysical data from a 
land surface model.
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period of time the measured TB and co-pol s are expect-
ed to have a functional relationship, and thus a hypothesis 
of linear functional relationship is established on the same 
spatial scale:

The linear dependence in (19) is based on units of dB for 
the SAR backscatter cross-section. The unknown param-
eters α [K] and β [K/dB] are dependent on the dominant 
vegetation and soil roughness characteristics, and the 
TB polarization can either be v or h and the s polarization 
is either vv or hh. To overcome the limitations of existing 
active-passive algorithms, a new algorithm is proposed 
that disaggregates the radiometer-based brightness 
temperature using high-resolution SAR backscatter by 
implementing Eq. (19).

SMAP grid configurations used in the algorithm are shown 
in Figure 40, where “C” represents coarse-scale (36 km), 
“F” represents fine-scale (3 km), and “M” represents me-
dium-scale (9 km) for the radiometer, SAR, and combined 
product grid spacing, respectively. This convention is 
used throughout the text. The SMAP grid configurations 
are nested: within a single (nc = 1) 36 km x 36 km pixel 
of grid C there are nm = 16 pixels of grid M and nf = 
144 pixels of grid F. SAR backscatter cross-sections are 
averaged in power to obtain the coarse-resolution (M & C) 
backscatter cross-sections. 

Equation (19) evaluated at scale C (36 km) is:

Here s(C) =                                             where F = 3 km grid reso-  
lution and nf is the number of F grid cell within C. TB(C) 
and s(F) are available in the SMAP L1C_TB and L1C_
S0_HiRes data products, respectively. [Note: s( Fi ) while 
averaging is in linear units.] The parameters α(C) and β(C) 
can be statistically estimated based on the time-series re-
gression in (20), i.e., pairs of SMAP radiometer TB(C) and 
spatially-averaged SAR data s(C) from successive over-
passes over the same Earth grid are used in the statistical 
linear regression TB(C) = intercept + slope ∙ s(C).                

Das et al. (2014) test the robustness of the assumption of 
the linear functional relationship (20) between brightness 
temperature and radar backscatter cross-section, using 
data from the Passive Active L-band System (PALS) air-
craft instrument taken during the Soil Moisture Experiment 
2002 (SMEX02) to show the strength of linear functional 
dependence (i.e., R2) between the time-series of TBv 
(4 km) and svv (4 km) specific to a particular location or 
coarse radiometer pixel (Figure 2 in Das et al. 2014; also 
see Colliander et al. 2012). The explained variance (high 
R2) of the linear approximation TBv = α+ β.svv is between 
65% and 93% for the SMEX02 PALS observations. There 

s(Fi )
1
nf S nf

i=1

IV. Combined Radar-Radiometer Soil  
Moisture Retrievals (L2/3_SM_AP)

A. Science Basis for Baseline Algorithm

The SMAP instrument package will deploy an L-band 
SAR and an L-band radiometer for concurrent coincident 
measurements. By combining the relative advantages 
of active and passive microwave remote sensing, more 
robust soil moisture mapping is possible (Entekhabi 
et al., 2010). Due to the concurrent SAR and radiometer 
measurements and their respective advantages, they can 
be effectively combined to derive soil moisture estimates 
with intermediate accuracy and at intermediate resolution 
(~9 km) that meet the SMAP science requirements. The 
SMAP L2_SM_AP surface soil moisture baseline retriev-
al algorithm takes advantage of unique features of the 
SMAP dual-instrument measurement approach and first 
produces estimates of brightness temperature at an inter-
mediate scale between the SMAP SAR and radiometer, 
using the SAR backscatter measurements to disaggre-
gate the radiometer brightness temperature. The disag-
gregated and the true radiometer brightness temperature 
fields are compatible in that their field averages are iden-
tical. The brightness temperature retrieval algorithms with 
ancillary information of the right type and at the right scale 
are then utilized to retrieve intermediate-resolution soil 
moisture fields based on the disaggregated brightness 
temperature fields.

An L-band radiometer measures the natural microwave 
emission in form of the brightness temperature (TB) of the 
land surface, while the L-band SAR measures the energy 
backscattered (s) from the land surface after transmission 
of an electromagnetic pulse. If the L-band radiometer and 
L-band SAR make a concurrent and constant look angle 
measurement over a particular region on the Earth, then 
the influence of azimuthal and viewing-angle dependent 
factors are minimized. Over short periods of time, the 
land surface vegetation and surface roughness factors 
remain stable, whereas variability in soil moisture status 
exists due to wetting and dry down of the soils. In such 
a scenario, the increase of surface soil moisture or soil 
dielectric constant will lead to a decrease in radiometer 
TB (at polarization v or h) and an increase in SAR co-pol 
(hh or vv) s measurements, and vice-versa (Njoku and 
Entekhabi 1996; Ulaby et al. 1996). During this short time 
period, TB and co-pol s are negatively correlated due to 
soil moisture variations in time. The time period should 
be much shorter than the seasonal phenology of vegeta-
tion. It should be noted that in some agricultural land use 
regions the vegetation can grow and change attributes 
rapidly over a few days,which may be a source of error. 
Also, precipitation and associated surface disturbances 
can change the soil roughness characteristics that may 
introduce another source of error. Despite these sources 
of uncertainty, within this region of interest over a short 

TB = α + β • s (19)

(20)TB(C) = α(C) + β(C) • s(C)
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were only 8 days of PALS flights during SMEX02 and in 
some locations of the flight domain not enough soil mois-
ture change was observed. 

To confirm the fidelity of the linear functional relationship 
between TB (C) and s for different hydroclimatic regions 
and various land covers, PALS data from multiple field 
campaigns (SGP99, SMEX02, CLASIC, and SMAPVEX08) 
are consolidated and analyzed. The TB (C) and s mean 
values from each field experiment are removed from the 
observations of each experiment in order to remove ex-
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Figure 40. SMAP radiometer, SAR, and combined product grid configu-
rations, where nf and nm represent the number of grid cells of SAR and 
combined product, respectively, within one radiometer grid cell nc.  

periment-to-experiment instrument calibration differences.  
Figure 2 in Das et al. (2011 and 2014) shows the ex-
plained variance between the various radar and radiome-
ter polarization measurements from the combined SGP99, 
SMEX02, CLASIC, and SMAPVEX PALS field campaigns 
(Colliander et al. 2012). The results are segmented based 
on the magnitude of vegetation cover. The explained 
variance ranges from 0.4 to 0.6 (for various polarization 
combinations) for low vegetation conditions and diminish-
es to zero for full vegetation cover.
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                    svv(Fi ) 

The statistically estimated slope parameter β(C) in (20) 
(when based on SMAP measurements) is specific for a 
given location. This is because β(C) is a sensitivity pa-
rameter relating TBv (C) and svv (C) and it is a function of 
surface characteristics like the local vegetation cover and 
soil roughness. The parameter varies seasonally as well 
as geographically depending upon land cover.  

To develop the satellite-based active-passive algorithm, 
(19) can also be conceptually evaluated at the 9-km scale 
M [same as was done for 36-km scale C in (19)] within 
the radiometer footprint C:   

where svv(Mj ) =                                                     obtained from the SMAP 
high-resolution (3 km) SAR data product. Here             is 
the unknown brightness temperature at scale Mj. This 
scaled brightness temperature is not available given the 
SMAP radiometer instrument resolution. In fact, this vari-
able is the target of our estimation and it is referred to as 
the disaggregated/downscaled brightness temperature.  
The first step in developing the algorithm is to subtract 
(20) from (22):

Because TBv(Mj  ) is not available, the parameters α(Mj  ) 
and β(Mj ) cannot be estimated in the manner that was 
followed at scale C. The path forward to incorporate the 
effects of the variations of these parameters at scale Mj 
with respect to the coarser scale C begins with rewriting 
(23) algebraically as

The left-hand side of (24) is the target variable of the 
active-passive algorithm, i.e., the disaggregated bright-
ness temperature at the 9 km scale Mj. The first term 
on the right-hand side (RHS), TBv(C), is the radiome-
ter-measured brightness temperature at 36 km or scale 
C. The second RHS term, {β(C) • [svv(Mj ) – svv(C)]}, 
can be calculated based on the regression parameter 
β(C) that is estimated through the time-series of radiom-
eter brightness temperature measurements and SAR 
measurements aggregated to scale C. The remainder of 
this second RHS term is also based on the SAR mea-
surements aggregated to scales Mj and C. The third RHS 
term accounts for the deviations/heterogeneity of  
the parameters α and β within the grid C. The term  
{[ α(Mj ) – α(C)] + β(Mj ) – β(C)] • svv(Mj )} is in units of 
brightness temperature and represents the subgrid scale 
heterogeneity effects. The parameters α and β depend 

The amount of vegetation cover is quantified using the 
radar measurements and the Radar Vegetation Index (RVI) 
that is defined as

 

with the radar backscatter values in units of power (Kim 
and van Zyl 2009). RVI is an index that is directly propor-
tional to the amount of vegetation on the land surface, and 
is influenced by the geometric structure of vegetation. It 
can be derived directly from SMAP radar measurements.  
When the vegetation cover is dense and there is complete 
unpolarized volume scattering from the vegetation canopy, 
which consists of randomly oriented dipoles, RVI has the 
upper limit of unity. If the vegetation cover consists of 
dipoles oriented at 45º with respect to the V polarization, 
then the scattering from vegetation alone will have RVI=2; 
however, natural vegetation cover is unlikely to have only 
uniformly oriented dipoles. For bare smooth surfaces, the 
cross-pol radar backscatter cross-section is much smaller 
than the co-pol values. This leads to a near-zero RVI. 
Conveniently, the RVI is nominally between zero and  
unity.

The parameter β is estimated for the measurements from 
the combined SGP99, SMEX02, CLASIC, and SMAPVEX 
PALS field campaign datasets (Colliander et al., 2012).  
The brightness temperature change sensitivity to back-
scatter change is highly dependent on vegetation density 
(Figure 41). Values of β for different classes of RVI show 
that dense vegetation cover masks the soil moisture sen-
sitivity of radar measurements (β approaches zero for RVI 
approaching unity). Across low vegetation cover regions 
(low RVI), the changes in radiometer brightness tempera-
ture are also reflected in changes in radar backscatter, 
leading to large (negative) values of the statistically- 
estimated β.

RVI = 
     8shv

shh + svv + 2shv
(21)
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Figure 41. Parameter β estimated from consolidated PALS data taken 
over four field experiments and for different landcover types. 

TBv(Mj  ) = α(Mj ) + β(Mj) • svv(Mj  ) (22)

Snmj
i=1

TBv(Mj ) – TBv(C) = {α(Mj ) – α(C)} + 

{[ β(Mj ) • svv(Mj )] – [β(C) • sC(C)]}
(23)

TBv(Mj) = TBv(C) + {β(C) • [svv(Mj) – svv(C)]} +

{[ α(Mj) – α(C)] + β(Mj) – β(C)] • svv(Mj)}

TBv(Mj  )

(24)

1
nm
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on vegetation and surface roughness. The SMAP SAR 
also provides high-resolution cross-polarization backscat-
ter measurements that are principally sensitive to vege-
tation and surface characteristics. The cross-polarization 
backscatter at scale Mj deviations from its coarse-scale 
aggregate [shv(C) – shv(Mj )] are indicators of the sub-
grid heterogeneity in vegetation and surface physical 
characteristics.  

This heterogeneity indicator [shv(C) – shv(Mj )] can be  
converted to variations in co-polarization backscatter 

through multiplications by the sensitivity             . This 

sensitivity, denoted by the scale C parameter Γ≡             , 

is specific to each grid C and the particular season for this 
grid C. It can be estimated using high-resolution SMAP 
co-polarization and cross-polarization SAR measurements 
through statistical regression. For any scale C data granule 
there will be a reasonable number of scale Mj SAR data 
pairs to estimate the sensitivity parameter Γ. The parame-
ter Γ derived from consolidated PALS data taken over four 
field experiments (Colliander et al. 2012) for different land 
covers is shown in Figure 42. Except for low vegetation 
cover, the parameter Γ tends to converge among different 
land covers. 

The term Γ ∙ [shv(C) – shv(Mj )] is the projection of the 
variations due to the heterogeneity in parameters α and β 
in the SAR co-polarization space. It can be converted to 
brightness temperature units for use in (23) through mul-
tiplication by β(C), i.e., β(C) ∙ Γ ∙ [shv(C) – shv(Mj )], where 
β(C) is the particular radiometer grid scale C conversion 
factor relating co-polarization backscatter variations to 
brightness temperature variations. Therefore,  

β(C) ∙ Γ ∙ [shv(C) – shv(Mj  )] ≈ {[α(Mj  ) – α(C)] + [β  (Mj  ) – 
β(C)] ∙ svv(Mj )} 

The SMAP active-passive brightness temperature disag-
gregation algorithm is complete by substituting this term 
for the third RHS term in (24),

 

which can be written more compactly as

 

The disaggregated brightness temperatures TBv(Mj ) from 
(26) are expected to have more noise than TBv(C) due to 
inherent errors in TBv(C), svv(Mj ), and shv(Mj ), and the 
degree of uncertainty associated with parameters β(C) and 
Γ that are derived from regressions. The disaggregated 
brightness temperature TBv(Mj ) at 9 km is an interme-
diate product of the proposed active-passive algorithm.  
Since the second and third terms in (26) are deviations 

dsvv(Mj)

dshv(Mj)[ ]
c dsvv(Mj)

dshv(Mj)[ ]
c

TBv(Mj) = TBv(C) + {β(C) • [svv(Mj) – svv(C)]} +
β(C) ∙ Γ ∙ [shv(C) – shv(Mj)]

(25)

TBv(Mj) = TBv(C) + β(C) • [svv(Mj) – svv(C)] +
Γ ∙ [shv(C) – shv(Mj)]

(26)

of the backscatter from the 36-km pixel mean values, 
the statistical expectation of the disaggregated bright-
ness temperature will necessarily always be equal to the 
radiometer measurement. Thus, there is a built-in consis-
tency between the L2_SM_AP and L2_SM_P soil moisture 
products. 
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Figure 42. Parameter Γ determined using svv and shv from consolidated 
PALS data taken over four field experiments and for different land cover 
types.

B. Baseline Algorithm Implementation

The L2_SM_AP algorithm is implemented on the SMAP 
Science Data System (SDS). The two primary inputs 
into the baseline algorithm are 36-km radiometer-based 
brightness temperature and the 3-km radar-based back-
scatter cross-sections. These data are derived from the 
L2_SM_P and L2_SM_A processing stream instead of the 
lower-level (Level-1) data products suite. The water-body 
correction and the freeze/thaw flags derived from the 
SMAP radar measurements are available at the early 
stages of Level 2 product processing. The water-body 
corrected brightness temperature at 36 km (TBp(C) for 
polarizations p=v and h) along a swath with associated 
QC flags is available as part of the L2_SM_P product, and 
is a direct input to the L2_SM_AP algorithm. The 3-km 
gridded spq (F) data for polarizations pq=vv, hh, and hv, 
3-km transient water body and freeze/thaw flags pro-
duced during the L2_SM_A processing are also input to 
the L2_SM_AP algorithm. The fine-resolution 3-km radar 
backscatter cross-section data contained in the coarse-
scale (36-km) grid are averaged to the intermediate and 
coarse-scale resolutions. The results are s(C) and s(Mj).    

C. Algorithm Flow

There are two main derived parameters based on the 
water-body corrected and flagged radar backscatter 
cross-section (Γ(C) and β(C)). Each is a scalar for the  
36-km grid. These are estimated statistically from spp(F), 
spq (F), and TBp(C). The parameter Γ(C) is the slope of the 
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linear regression between deviations of Γ≡                where 
d is defined as the deviation α(Mj) – s(C). The parameter 
β(C) is estimated as the regression slope of a time-series 
of spp(C) and TBp(C). The time window over which the 
statistical regression is implemented must balance the 
sample size (favoring longer windows) and changes in the 
linear slope due to changing vegetation phenology (favor-
ing shorter windows). Trade-off studies on the size of this 
time window are ongoing, and early indications (based on 
Aquarius active-passive data) are that a 3-month window 
is applicable in most climate zones.

Prior values for Γ(C) and β(C) are also available in data 
files during processing. The priors are established using 
the field experiment-based parameterizations of the pa-
rameters as a function of RVI (Figures 41 and 42) as well 
as Aquarius heritage observations. The standard error of 
estimation of slope is also derived during the regression 
steps described above. The same is available for the 
archive prior values for the parameters. The statistical re-
gression values and the priors are combined in a Bayesian 
framework based on their respective errors of estimation. 
This leads to more robust estimates for Γ(C) and β(C). 

At this point the disaggregated brightness temperatures 
at the intermediate 9-km scale can be calculated using 
(26). At this stage the same baseline algorithm used for 
L2_SM_P is applied to estimate surface soil moisture. The 
ancillary data used in the process will be at a finer reso-
lution than those used in L2_SM_P. But the architecture 
of the algorithm and the parameterizations used will be 
the same. This ensures a high level of consistency among 
all the SMAP soil moisture products. Documentation for 
these static and dynamic ancillary datasets can be found 
at http://smap.jpl.nasa.gov/science/dataproducts/ATBD/.

D. Alternate Algorithms

The alternate algorithms for the active-passive soil mois-
ture product are variations of the brightness temperature 
disaggregation of the baseline algorithm. In the first 
alternative, the brightness temperature disaggregation is 
performed at the fine scale Fi instead of the intermediate 
scale Mj ( Figure 40). Then the brightness temperature 
values are aggregated to 9 km and soil moisture values 
are retrieved at the 9-km scale. The performance of this 
alternate implementation is highly dependent on the 
impact of increased radar noise at the higher resolution.  
In a second alternate implementation, the soil moisture 
retrievals are performed on the estimates of 3-km disag-
gregated brightness temperatures. Then the soil moisture 
values are averaged to the intermediate 9-km resolution.  
Since over the dynamic range of surface soil moisture and 
brightness temperature the variations are nearly linear, the 
nonlinearity of the tau-omega model is not expected to 
affect the relative performance of this (second) alternate 

algorithm. Aggregation of soil moisture to 9 km is also 
affected by the quality of the ancillary data such as land 
cover, physical temperature, and soil classification. These 
alternate implementations of the baseline algorithm are 
currently undergoing testing using simulated SMAP data 
products (see next section).

E. Algorithm Performance

The performance of the baseline algorithm is evaluated 
using the PALS datasets from SMEX02. The reason for 
using the PALS SMEX02 dataset is the availability of 
wet and dry soil moisture conditions and the range of 
vegetation conditions within the PALS flight domain for 
the campaign duration. PALS was flown over the SMEX02 
region (the Walnut Creek watershed, Iowa) for eight days 
during the months of June and July, 2002. 

Although the PALS L-band radar and radiometer have 
similar frequencies to SMAP, the PALS instruments have 
much finer spatial resolution (approximately ~0.8 km 
depending on flight altitude). To apply the L2_SM_AP 
algorithm to PALS data, the data are gridded for the  
radiometer at ~4 km and for the radar at ~0.8 km.  
Equation (8) is implemented to obtain the disaggregated/
downscaled TBv at ~0.8 km, and the L2_SM_P algorithm 
(see L2_SM_P algorithm description in this chapter) is 
then used to retrieve soil moisture from disaggregated TBv 
at ~0.8-km resolution. Das et al. (2014) report that  
the RMSE of the brightness temperature disaggregation 
(4 km to 0.8 km) is 1.8 K. When the 4-km radiometer data 
are resampled (using just simple assignment) to 0.8 km, 
the RMSE is 2.75 K. The improvement 2.75 to 1.8 K is 
due to the inclusion of heterogeneity information from the 
radar in the disaggregation process. The higher resolution 
and accuracy of the disaggregated brightness tempera-
ture enables soil moisture retrieval at high resolution.  

Soil moisture retrievals on disaggregated TBv are per-
formed using the τ-w algorithm with ancillary data 
measured/sampled during the SMEX02 experiment. To 
validate the retrieved soil moisture estimates at ~0.8 km 
resolution, the field averaged soil moisture calculated from 
in situ measurements in 31 fields over 4 days are used 
(Figure 43a–c). The representative spatial resolution of a 
field is near ~0.8 km, making the comparison between 
field measurements of soil moisture and retrieved soil 
moisture from disaggregated TB at 0.8 km compatible.  
Figure 43(a) results indicate that the proposed algorithm 
(RMSE: 0.033 cm3/cm3) outperforms the minimum  
performance (RMSE: 0.056 cm3/cm3) as shown in  
Figure 43(b). The Minimum Performance intermediate- 
resolution soil moisture values are the retrieval results  
from TBv resampled at ~0.8 km. They are obtained by 
direct resampling of TBv at ~4 km to high-resolution  
~0.8 km pixels. The Minimum Performance is a reference 

dspp(Mj)

dspq(Mj)[ ]
c
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for comparison. It is essentially a resampling of brightness 
temperature to finer scale without use of information from 
the radar. Results from this study establish the applicabili-
ty of the algorithm (26) by clearly outperforming the results 
from Minimum Performance. The baseline algorithm also 
captured the spatial variability in soil moisture with reason-
able accuracy for vegetation having ≤ 5 kg/m2 VWC. The 
baseline algorithm reduces the Minimum Performance 
algorithm error by 40%.

Another test was performed to evaluate the contribution 
of radar cross-pol backscatter measurements (spq) on 
the algorithm (26). The radar spq addresses the hetero-
geneity especially due to vegetation within the coarse 
radiometer footprint. The test was conducted by ignoring 
the radar cross-pol measurement (spq) in the algorithm 
(25) or essentially Γ = 0. Therefore (26) becomes

The retrieval using (27) is shown in Figure 43(c). The 
RMSE (0.043 cm3/cm3) in this scenario is greater than 
the RMSE (0.033 cm3/cm3) obtained from the baseline 
algorithm (26). This test clearly captures the important 
contribution of spq in capturing sub-radiometer measure-
ment scale vegetation heterogeneity for the baseline algo-
rithm. However, (27) performed better than the Minimum 
Performance and hence strengthens the applicability of 
radar measurements to disaggregate the coarse radiome-
ter measurement.

In order to test the algorithm across a wider range of 
conditions than those encountered in the limited airborne 
field campaigns, simulation environments are used. A 
global-scale simulation (GloSim) for the SMAP mission 
is developed and implemented on the SMAP Testbed 
at JPL. The GloSim orbit simulator on SDS mimics the 
SMAP configuration and follows an 8-day exact repeat 
pattern that provides total global coverage in 2–3 days.  
GloSim includes the capability of generating orbital files 
of simulated radiometer and radar observations of TB and 
s, respectively. Description of models used in forward 
simulation of TB and s are beyond the scope of this pa-
per; however, details are available at the SMAP webpage 
(http://smap.jpl.nasa.gov/science/dataproducts/ATBD/).  
Geophysical data (e.g., soil moisture and soil temperature) 
obtained from GMAO MERRA at 9-km resolution covering 
a 1-year period and ancillary data (e.g., model parame-
ters, soil texture, land cover, water bodies, and VWC) at 
high resolution are used as underlying truth maps to sam-
ple forward observations of TB and s to mimic SMAP-like 
measurements. GloSim also applies realistic instrument/
antenna beam sampling and orbital sampling to simu-
late the footprint-averaged observations within swaths 
acquired by the SMAP instruments. These simulated 
observations, along with their noise-perturbed versions, 

B
as

el
in

e 
A

lg
or

ith
m

 (c
m

3 /
cm

3 )

0.4

0.3

0.2

0.1

0.0
0 0.1 0.2 0.3 0.4

Average of Field Measurements (cm3/cm3)

RMSE: 0.033 (cm3/cm3)

(a)

M
in

im
um

 P
er

fo
rm

an
ce

 (c
m

3 /
cm

3 )

0.4

0.3

0.2

0.1

0.0
0 0.1 0.2 0.3 0.4

Average of Field Measurements (cm3/cm3)

RMSE: 0.055 (cm3/cm3)

(b)

B
as

el
in

e 
w

ith
 N

o 
H

V
 A

dj
. (

cm
3 /

cm
3 ) 0.4

0.3

0.2

0.1

0.0
0 0.1 0.2 0.3 0.4

Average of Field Measurements (cm3/cm3)

RMSE: 0.043 (cm3/cm3)

(c)

Figure 43. Comparison of field averaged soil moisture and retrieved soil 
moisture estimated from PALS data for 8 days: (a) Baseline Algorithm,  
(b) Minimum Performance, and (c) Baseline Algorithm soil moisture 
retrieval with no heterogeneity information provided by cross-pol shv  
radar backscatter information. 

are essential to the testing, development, and operational 
implementation of all SMAP Level 2 and Level 3 soil mois-
ture and freeze/thaw algorithms. 

L2_SM_AP retrieval is performed on the simulated SMAP 
half orbit granules of L2_SM_P and L2_SM_A generated 

TBp(Mj) = TBp(C) + β(C) • [spp(Mj) – spp(C)] (27)
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from GloSim. The algorithm is implemented for extensive 
analyses. These analyses help to understand and develop 
solutions and risk reduction of various important opera-
tional and algorithm related issues such as: a) determine 
size of temporal window required over valid land pixels of 
radiometer and radar data to derive high-fidelity algo-
rithm parameters; b) identify regions of the world where 
updates to the temporal window are essential due to 
changing vegetation phenology and ground conditions;  
c) develop and mature algorithm parameters database;   
d) develop and mature L2_SM_AP error budget table;  

e) highlight the sensitivities of various ancillary data, 
masks and flags on the retrievals; and f) assess the limita-
tions of the algorithms and help to tune the algorithms.

For discussion and illustration of L2_SM_AP retrievals, 
the particular swath as shown in Figure 44 is selected 
because it covers a wide range of conditions in soil mois-
ture state (dry–wet), soil texture (sand–clay), land covers 
(rainforest–desert), and different hydroclimatic domains. 
Along with the SMAP products as inputs, the L2_SM_AP 
processor implemented in the SMAP SDS also ingests 
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static (e.g., soil) and dynamic (e.g., VWC and soil tem-
perature) ancillary datasets, and global masks (e.g., ur-
ban, inland water bodies) at 9-km Earth fixed grid. For the 
GloSim L2_SM_AP retrievals, the parameter (β) estimation 
is conducted using time series of TBv(C) and svv(C) for all 
grid cells. Figure 44(c) illustrates the state of parameter β 
(derived from a 3-month time series) used over the swath 
that clearly exhibits dependency of β with respect to land 
cover. The land cover mostly influences the dynamic 
range of TBv(C) and svv(C), and hence the parameter β.  
Another parameter Γ in (26) that detects the heterogeneity 

within C is determined on the fly over the swath and is 
shown in Figure 44(d) for a particular day in the month of 
June. Typically, very high correlation is observed between 
svv and shv, and that is well captured (Figure 44d). The 
parameter Γ also displays dependency for land cover. 

The L2_SM_AP algorithm (26) is applied on data obtained 
from L2_SM_P and L2_SM_A. Figure 45(a) shows that 
the disaggregated TB at 9 km that captures the spatial 
heterogeneity detected by the SMAP radar that would 
otherwise be masked by the coarse-resolution scale of 

Figure 45. (a) Swath of disaggregated TBv at 9-km grid from GloSim for 
1 day in June; (b) Swath of retrieved soil moisture at 9-km grid from 
GloSim for 1 day in June; (c) Errors in soil moisture at 9-km grid from 

75°N

K

300

60°N

45°N

30°N

15°N

0°N

15°N

30°N

45°N

60°N
75°N

290

280

270

260

250

240

230

220

210

200

(a)

GloSim for 1 day in June; (d) True soil moisture at 9-km grid from GloSim 
for 1 day in June.

Brightness Temperature (V-pol)
30°W 0° 30°E 60°E

75°N

cm3/cm3

0.50

60°N

45°N

30°N

15°N

0°N

15°N

30°N

45°N

60°N
75°N

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

(b)

Soil Moisture Retrievals
30°W 0° 30°E 60°E

75°N

K

0.06

60°N

45°N

30°N

15°N

0°N

15°N

30°N

45°N

60°N
75°N

0.05

0.04

0.03

0.02

0.01

0

(c)

Errors in Soil Moisture Retrieval
30°W 0° 30°E 60°E

75°N

cm3/cm3

0.50

60°N

45°N

30°N

15°N

0°N

15°N

30°N

45°N

60°N
75°N

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

(d)

True Soil Moisture
30°W 0° 30°E 60°E



SMAP HANDBOOK70

the brightness temperature measurements. Soil mois-
ture retrieval is conducted on the disaggregated TBv 
using the tau-omega (τ-w) model (SCA). Figure 45(b) and 
Figure 45(d) show the retrieved and truth soil moisture 
at 9 km, respectively. Applicable noise is introduced in 
the ancillary data while performing the retrievals. Com-
parisons of Figure 45(b) and Figure 45(d) show similar 
spatial patterns of soil moisture for most of the regions. 
However, over highly-vegetated regions (e.g., rain forest), 
the τ-w model did not converge and therefore a null value 
is assigned during the retrieval process. To get an initial 
assessment of retrievals, errors are computed for the 
swath and are shown in Figure 45(c), with higher error for 
regions having high vegetation as expected. 

Nearly ~5300 half-orbit granules of L2_SM_P and L2_
SM_A are processed for a 1-year period for the GloSim 
L2_SM_AP retrievals. RMSE is computed for each 9 km 
grid cell. The global spatial pattern of RMSE is shown 
in Figure 46 for a 6-month period (April–September) 
period. The spatial pattern of RMSE in Figure 46 matches 
with the global VWC spatial distribution. RMSEs are not 
computed for the 9 km grid cells having more than 5% 
water fraction within the 9 km, more than 25% urban 
areas, open water bodies, and mountainous regions.  
These threshold values are currently being evaluated and 
harmonized for consistency across all SMAP Level 2 soil 
moisture products. Quantitative values of RMSE with re-
spect to a range of VWC over the global extent is shown 
in Figure 47. The RMSE curve in this plot clearly meets 
the SMAP L1 requirements. 

V. Radar-Only Soil Moisture Retrievals  
(L2/3_SM_A)

A. Science Basis for Baseline Algorithm 

Retrieval of soil moisture from measured backscatter data 
typically implies an inversion of the radar forward scatter-
ing process. It has been common in the literature to use 
radar measurements to develop empirical or semi-empiri-
cal models for scattering or for inversion for bare surfaces 
(Dubois et al. 1995; Oh et al. 1992) and for vegetated 
surfaces (Bindlish et al. 2009; Joseph et al. 2008; Kim 
and van Zyl 2009). The empirical models face challenges 
when compared with datasets not used in the original 
model development (Zribi et al. 1997). Analytical inver-
sion of a complex forward model is not feasible; iterative 
numerical inversion often requires significant computing 
time, especially for the global and frequent mapping to 
be done by SMAP (Verhoest et al. 2007), although the 
iterative techniques have become more effective and 
computationally efficient (Tabatabaeenejad et al. 2012).  
Forward model fits (e.g., using polynomials) were inverted 
analytically (Shi et al. 1997), iteratively (Moghaddam et al. 
2000), using a genetic algorithm approach (Oh 2006), or 

through neural-network training (Paloscia et al. 2008).  
The performance of all these methods is dependent on 
the fidelity of the inversion formulas, the accuracy of the 
model fitting, and the inherent accuracy of the forward 
model. As a different strategy, the effects of time-invariant 
surface roughness and vegetation were corrected by de-
riving the relative change index (Wagner and Scipal 2000) 
or through temporal differencing (Balenzano et al. 2011).  
Such approaches are susceptible to errors caused by 
changes in vegetation or other geophysical conditions 
over the time series of data used. 

Recently, a look-up table representation of a complicated 
forward model was demonstrated to be an accurate and 
fast tool for retrieval (Kim et al. 2012a; Kim et al. 2014). 
Bare rough surfaces can be characterized in terms of 
their root mean square (rms) roughness height, correlation 
length, and moisture content (a surrogate for dielectric 
constant). The use of time-series data makes the retrieval 
a well-constrained estimation problem, under the as-
sumption of a time invariant surface roughness (Verhoest 
et al. 2007). By taking a co-polarized ratio (Shi et al. 
1997) or its equivalent (Kim et al. 2012a), the soil moisture 
retrieval becomes insensitive to the correlation length 
except for very rough surfaces, which enables an accu-
rate retrieval of soil moisture without correlation length 
information. This approach has been extended to the 
vegetated surface by introducing a vegetation axis to the 
lookup table (Kim et al. 2014). One axis representation of 
the vegetation effect is clearly a simplification, considering 
that different sets of vegetation parameters result in dif-
ferent backscattering coefficients. However, with SMAP’s 
three measurement channels (HH, VV, HV), at most three 
independent parameters can be uniquely estimated, and 
therefore simplified forward models must be represented 
in terms of at most three dominant parameters. The sim-
plification will result in some errors in soil moisture retriev-
al, especially in heavily vegetated areas such as forests. 
Allometric relationships, if available, reduce the number of 
unknowns and may improve the retrievals (Tabatabaeene-
jad et al. 2012). The three parameters used to simplify the 
scattering model are then the dielectric constant of soil, 
soil surface roughness, and VWC. Accordingly, the lookup 
table is referred to as a “data cube” (van Zyl 2011), shown 
in Figure 48.

The merits of using a data cube to estimate the desired 
unknowns are summarized below:

•	 It avoids numerical or analytical inversion that is often 
not feasible for a sophisticated forward model

•	 It achieves similar inversion accuracy as the numer-
ical or analytical inversion by adopting a fine interval 
for the data cube axis, as demonstrated by van Zyl 
2011
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(IGBP). All crops belong to one class according to the 
IGBP classification although their scattering characteris-
tics may not be the same. Considering that SMAP’s 3-km 
resolution radar will be useful in monitoring croplands that 
have relatively small spatial extent, four dominant crop 
classes of the world were selected according to the sta-
tistics provided by the Food and Agriculture Organization 
of the United Nations and regional crop maps. The SMAP 
project initially employs data cubes for 17 classes (13 
IGBP classes plus 4 crops), and will expand the classes 
in the future if needed.

The distorted Born approximation (DBA) scattering theory 
is applied to model radar backscattering for a vegeta-
tion-covered soil layer, which can be qualitatively decom-
posed into a sum of three dominant contributions: 

 

In this expression, spq represents the total radar scat-
tering cross-section in polarization pq (HH, VV, or HV 
for SMAP radar), spq exp(–2τpq) denotes the scattering 
cross-section of the soil surface modified by the two-way 
vegetation attenuation, spq is the scattering cross-sec-
tion of the vegetation volume, and spq represents the 
scattering interaction between the soil and vegetation.  
The quantity ε is the complex dielectric constant of bare 
soil, s and l are the rms height and the correlation length 
for surface roughness, respectively, τ is the vegetation 
opacity along the slant path of the radar beam, and VWC 
is the vegetation water content. The latter two parameters 
can be derived from specific geometric and dielectric 
properties of the discrete scatterers contained within the 
vegetation canopy. Full details of the forward model de-
velopment are provided in Burgin et al. (2011), Duan and 
Moghaddam (2011), Huang and Tsang (2012), Huang 
et al. (2010), and Kim et al. (2014). 

Figure 46. RMSE in soil moisture estimates at 9-km grid from GloSim for 6-month period (April–September)
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Figure 47. RMSE stratified by the mean VWC contained within 9 km from 
GloSim for a 6-month period (April–September). 
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•	 It simplifies forward model modification or replace-
ment while retaining the same retrieval formula 

•	 A new data cube can be added for a new vegetation/
forest class or for the same vegetation class but at a 
different season

Forward models are developed for each land cover class 
of the International Geosphere-Biosphere Programme 
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Figure 48.  An example of data cubes for grass surfaces. s refers to rms 
height of isotropic surface, and rages from 0.5 to 5 cm. εr is the real part 
of relative permittivity (3 to 30). VWC denotes vegetation water content 
(0 to 5 kg/m2).  

t

v
sv

(28)
t s

v sv
spq = spq (ε, s, l ) exp (–2τpq(VWC)) +  

spq (VWC) +spq (VWC, ε, s, l)
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The range of the VWC axis varies by each land cover 
class. To determine the range in VWC, a 10-year clima-
tology of global VWC for each IGBP class was construct-
ed using a 10-year climatology of MODIS normalized 
difference vegetation index (NDVI) information, which was 
subsequently converted into VWC using a set of land 
cover–based equations to estimate the combined foliage 
and stem VWC (Jackson et al. 2004; Hunt et al. 2011).  
The full details of the VWC estimation are available in the 
SMAP Vegetation Water Content Ancillary Data Report 
(http://smap.jpl.nasa.gov/science/dataproducts/ATBD/).  
The resulting VWC values range from zero to the maxi-
mum specified in Table 12.

The evaluation of the data cubes was presented else-
where by comparing with field campaign datasets and 
satellite data. The list of the field campaigns used is 
shown in Table 12. The evaluation results are summarized 
as:

IGBP class ID, class name

Table 12.  Specification of the data cubes. 

1 Evergreen needleleaf

2 Evergreen broadleaf

3 Deciduous needleleaf

4 Deciduous broadleaf

5 Mixed forest

6 Closed shrub

7 Open shrub

8 Woody savanna

9 Savanna

10 Grassland

11 Wetlands

12 Crop  : wheat

12           : corn

12           : soybean

12           : rice

14 Crop/natural vegetation

16 bare surface

VWC percentile
(50th, 95th, Max, kg/m2)

% cover of
global land

Training or Validation
Reference

13.2, 14.7, 16.8

17.9, 18.5, 20.1

7.3,   7.9,   8.7

12.0, 12.9, 13.6

12.0, 12.7, 13.7

1.6,   2.9,   4.1

0.5,  1.9,   2.8

3.6,  4.4,   5.4

2.4,   3.2,  4.2

0.5,   1.7,  2.9

3.5,   4.3,  5.4

2.5,   3.8,  4.8

3.3,   3.9, 4.7

n/a

4.0

10.0

0.6

1.6

4.7

0.5

18.3

7.5

7.0

9.3

0.2

9.0

2.1

13.7

CanExSM10

CanExSM10

CanExSM10

CanExSM10

CanExSM10

Tara Downs

Tara Downs

Tara Downs

Not available

SGP99

CanExSM10

Not available

SMEX02

SMEX02

Not available

Not available

Michigan92

Vegetation Water Content (VWC) was derived from the 10-year 

MODIS NDVI climatology. % cover of each class is compiled 

by the MODIS-IGBP product. “urban” and “ice” (ID=13 and 15, 

respectively) were not simulated. Further details of the validation 

datasets and results can be found in material related to various 

field experiments: Canadian Experiment for Soil Moisture in 2010 

(CanEx-SM10) (Tabatabaeenejad et al. 2012), Southern Great 

Plains (SGP) 1999 (Njoku et al. 2002), Michigan 92 (Oh et al. 

2002), Soil Moisture Experiment 2002 (SMEX02) (Jackson et al. 

2004), Tara Downs (Burgin et al. 2011).

•	 Bare surface (Duan and Moghaddam 2011; Oh et al. 
2002). Compared with the in situ data over a wide 
range of soil moisture, roughness, and correlation 
length, the data cubes are in good agreement for 
both co-pol and cross-pol with an RMSE smaller 
than 1.5 dB (co-pol) and 2.2 dB (cross-pol).

•	 Woody vegetation (Burgin et al. 2011). The fidelity 
of training the data cubes is such that the model 
predictions of evergreen needleleaf forest match the 
concurrent overflight observations by the Uninhabited 
Aerial Vehicle Synthetic Aperture Radar (UAVSAR) 
with a RMS difference of 0.13 (HH) and 0.09 (VV) dB.  
For old Jack pines, their relatively simple geometry, 
smooth and dry ground, and absence of thick and 
wet understory helped achieve the very small training 
error (the errors do not represent validation using 
independent data at present). The same modeling 
approach was validated for a variety of mixed forests 
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in Australia using independent data (JPL’s Airborne 
SAR, AIRSAR): the co-pol RMSE is smaller than  
3.4 dB even without removing any biases (Figure 5  
of Burgin et al. 2011). The models for woody savan-
na were validated by comparison with independent 
spaceborne data (Phased Array type L-band SAR, 
PALSAR): the co-pol RMSE is better than 2.7 dB 
(Figure 4, Burgin et al. 2011).

•	 Non-woody vegetation (Kim et al. 2014). Co-pols 
are simulated with an accuracy of better than 1.8 dB 
RMSE (pasture and grass). Both co-pols are simu-
lated with an accuracy of better than 2.9 dB RMSE 
(corn). 

•	 The backscatter predictions by the data cubes were 
compared with observations of the scatterometer on-
board the Aquarius/SAC-D satellite (Kim et al. 2013).  
The co-pols compare well with a mean difference of 
3 dB for bare surface and 2 dB for the other classes.  
Part of the bias may be explained by the difference 
in incidence angle, a bias in input data used by the 
evaluation process, and the terrain slope (note the 
Aquarius spatial resolution is nominally 80–120 km).  
The standard deviation of the difference between 
simulation and observation is about 2.5 dB (shru-
bland, savanna, and grassland) and 4 dB (cropland 
and bare soil). Parts of the 4 dB standard deviation 
error may be caused by the terrain slope and diversi-
ty of crops.

B. Baseline Retrieval Algorithm

The SMAP radar provides three independent chan-
nels (HH, VV, and HV). HV-channel measurements are 
reserved for possible use in correcting vegetation effects.  
The remaining two co-pol measurements (HH and VV) 
are not always sufficient to determine s and ε. One of the 
main causes is the ambiguity in bare surface scattering — 
a wet and smooth surface may have the same backscat-
ter as a dry and moderately rough surface. Very often 
the time scale of the change in s is longer than that of ε 
(Jackson et al. 1997). Then s may be constrained to be a 
constant in time, thus resolving the ambiguity (Kim et al. 
2014). The concept of a time-invariant s has also been 
utilized in other studies (Joseph et al. 2008; Mattia et al. 
2009; Verhoest et al. 2007). The SMAP baseline algorithm 
differs from these studies in that no ancillary or ground 
measurements or statistical assumptions are required to 
constrain s and in that the algorithm may apply generally 
to temporally changing vegetation.

The SMAP baseline approach (Kim et al. 2012a; Kim et al. 
2014) is a multichannel retrieval algorithm that search-
es for a soil moisture solution such that the difference 
between modeled and observed backscatter is minimized 
in the least squares sense. The algorithm estimates s first 

and then retrieves εr using the estimated s. Vegetation 
effects are included by selecting the forward model’s s0 at 
the VWC level given by an ancillary source or the SMAP 
HV measurements. The algorithm retrieves s and the real 
part of the dielectric constant (εr) using a time series of N 
co-pol backscatter measurements: s0

HH(t1), s0
VV(t1),  

s0
HH(t2), s0VV(t2), … , s0

HH(tN), and s0
VV(tN). There are thus 

2N independent input observations and N+1 unknowns 
consisting of N εr values and one s value. Note that the 
VWC provided by ancillary information is allowed to be 
varying throughout the time series.

Radar backscattering coefficients before conversion to 
decibels can be modeled as Gaussian random variables 
(Ulaby et al. 1986a) to account for speckle and thermal 
noise effects. Assuming sufficient integration following 
power detection, the backscattering coefficient after con-
version to decibels can also be modeled as a Gaussian 
random variable. Because SMAP will observe HH and VV 
returns at slightly different center frequencies, the effects 
of speckle and thermal noise on these measurements  
are statistically independent. Statistical independence  
of speckle in measurements at differing time steps is also 
expected. These facts and a maximum likelihood form- 
ulation motivate least-squares retrieval approaches  
based on the average of individual error terms. It is noted  
that calibration, radio frequency interference, and other  
error sources may produce correlated error terms. The  
systematic and correlated components from these  
sources will be corrected. Any residuals may impact 
overall algorithm performance and are modeled as un-
correlated Gaussian noise (although they may still contain 
correlated noise).

The retrieval algorithm therefore minimizes the cost func-
tion (C):

(29)

where values from observations and from the forward 
model are denoted as s0 and s0

fwd (both in dB), respec-

0
C (s, n, εr1, εr2,...,εrN) 

0

0 0

0 0

0 0

+ ..
0+ w1,HH (sHH (tN) – sHH, fwd (s, n, εrN))2   

+ w1,VV (sVV (tN) – sVV, fwd (s, n, εrN))2

0

0 0

0E1 (sHH (t1), sVV (t1), s, n, εr1) + 0

0E2 (sHH (t2), sVV (t2), s, n, εr2) + ..0

0EN (sHH (tN), sVV (tN), s, n, εrN)0

= 1
N [ ]

= w1,HH (sHH (t1) – sHH, fwd (s, n, εr1))2   

+ w1,VV (sVV (t1) – sVV, fwd (s, n, εr1))2

+ w1,HH (sHH (t2) – sHH, fwd (s, n, εr2))2   

+ w1,VV (sVV (t2) – sVV, fwd (s, n, εr2))2
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tively. An additional parameter n is included above (so that 
a total of N+2 parameters are now involved) to account 
for bias discrepancies between data-cube simulations 
and actual vegetation properties. Again, note that the 
above formulation can accommodate temporal change in 
VWC, because s0

fwd is chosen by the VWC value avail-
able at each time. The weights wi in the cost function 
are associated with differing errors in the cross-section 
measurement as a function of time or polarization, and the 
subscript i indexes the time sequence. Uniform weights 
are utilized in the results to be shown, based on the 
measurement errors of each channel at each time step 
(Kim et al. 2012a). The cost function then is an average of 
terms Ei that depend individually on only three (e.g., s, n, 
and εr1) of the N+2 parameters. This allows the minimum 
of the cost function to be located without a search over 
the complete N+2 dimensional space.

Because s and n are the only parameters in common 
among the terms of the cost function, the retrieval 
algorithm considers all possible values of s and n. For 
each s value, values of εri are found that minimize each 
Ei term individually (i.e., N one dimensional searches are 
performed), and the resulting average of Ei values is the 
minimum value of the cost function for the assumed value 
of s, notated Cmin(s). The retrieved estimate of srtr is 
determined as the value of s that minimizes Cmin(s), and 
retrieved estimates of soil moisture are the correspond-
ing εri values determined when constructing Cmin(srtr).  
Because s0 is a monotonic function of s, the minimum is 
unique with respect to s. s0 is also a monotonic function 
with respect to εr. Therefore, the minimum associated with 
εri is unique for a given s. 

The least-square minimization of Eq. 29 is implemented 
using the forward model data cube (generated using the 
models described in Figure 48). The current baseline 
retrieval is generally independent of the correlation length 
(that therefore is not a part of the data cube) as long as 
the soil surface is not too rough (Kim et al. 2012a). 

C. Algorithm Flow 

The algorithm flow is presented in Figure 49. The proces-
sor reads in 1-km resolution s0 from the SMAP L1C_S0 
(1-km radar data). The 1-km data in natural units are 
aggregated onto a 3-km EASE2 grid, during which various 
quality flags are applied. The complete set of the quality 
flags is presented in the SMAP Data Specification Docu-
ment. Among these, three quality flags are derived using 
the 3-km s0: freeze/thaw (F/T) state (see Chapter 6 for 
details), radar vegetation index (RVI), and transient water 
body. Described briefly, these three parameters contribute 
to SMAP’s soil moisture retrieval as follows:

•	 Based on the F/T state, soil moisture will be retrieved 
only for unfrozen ground 

•	 The RVI is the normalized ratio of cross-pol s0 to the 
total power (Kim and van Zyl 2001), and is designed 
as a normalized index of the vegetation amount. For 
rice and soybeans, the RVI may provide an estimate 
of VWC (Kim et al. 2012b), which in turn is under 
consideration for use in choosing the vegetation axis 
of the data cube during the retrieval. 

•	 The spatial coverage of inland open water bodies is 
not yet well monitored (Alsdorf et al. 2007) and highly 
variable in time. Due to the difference in brightness 
temperature and s0 between water and land surfac-
es, accurate knowledge of a transient water body 
is important for SMAP’s soil moisture retrieval. The 
presence of transient water bodies may be retrieved 
with multi-polarized L-band radar observations (Kim 
et al. 2011). Accordingly, water-body information that 
is synchronized and simultaneous to SMAP’s soil 
moisture retrieval will be derived with SMAP’s radar 
data.

Static and dynamic ancillary data are sampled for each 
pixel. The complete set of the ancillary data is defined in 
“SPS-SPDM Interface Memorandum for the L2_SM_A” 
(SMAP JPL document, SMAP-860-026-12 D, May 20, 
2013). s0 values from past time stamps are sampled and 
used by the time-series algorithm. For each 3-km pixel, 
land cover class information is obtained from annual 
ancillary data. The land cover information allows the 
determination of an appropriate data cube for each pixel.  
Finally, the retrieval over all land cover classes is spatially 
assembled to create a half-orbit output, followed by the 
conversion from the dielectric constant to soil moisture.

D. Alternate Algorithms

Two alternative algorithms have been implemented. The 
official product will include only the retrieval output from 
the baseline algorithm. However, internally the soil mois-
ture retrieval outputs from the baseline and alternative 
algorithms will be continuously assessed and compared 
with one another.

Change detection by Wagner et al.

A radar-only time-series algorithm (Wagner et al. 1999) 
was proposed to retrieve an index of mv change using 
C-band ERS scatterometer data. The index (Ms) is given 
by 

Ms = (s0 (t) – s0dry) / (s0wet – s0dry), (30)
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where s0(t) is the observation at one time. s0
wet and s0

dry 
are two extreme values of s0 of a pixel, which may be 
derived from a multi-year database of radar records. At 
least one year worth of the SMAP data are needed to de-
rive the two extreme values of s0. Ms is an index ranging 
from 0 to 1, and can distinguish 5 different levels of soil 
moisture states. Later studies retrieved the index varying 
continuously, and correction of the vegetation effects was 
applied (Naeimi et al. 2009). Most of the studies were 
applied to low-speckle scatterometer data with the spatial 

resolution of 25 km or larger. When applied to the 1-km 
resolution data from the ENVISAT Advanced SAR (ASAR), 
the speckle began to impact the performance even at 
3-km resolution; 3–10 km resolution was recommended 
for reliable retrieval of the index (Pathe et al. 2009). The 
algorithm has so far been implemented with vertical po-
larization due to availability. The sensitivity to soil moisture 
may be stronger with horizontal polarization thanks to the 
double-bounce process than with vertical polarization.  
Both polarizations will be studied for SMAP.

Swath-grid sVV, shh shv from 
L1C_S0 (1 km)

Average to 3 km s0
Determine Quality Flags

Define F/T State
Compute Radar
Vegetation Index

Detect Transient
Waterbody

Dynamic
Ancillary Data

Static
Ancillary Data

Extract Over a 
Granule (Static)

Extract Over a 
Granule (Dynamic)

Quality Flags
Perform Retrieval

Land Surface
Classification

Assign a Default

sVV, shh shv from 
the Past L3_SM_A (3 km) 16 Sets of

Data Cube

L2_SM_A Soil
Moisture Output

Retrieval Per Each Landcover Class

Class 1 Class 16.....

Assemble Retrieval Over
Different Classes

Convert Dielectric
Constant to Soil Moisture
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Time Tag

Figure 49.  Flow of the baseline algorithm. F/T stands for freeze/thaw.
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mv = f (shh, svv) (31)

Change-detection based on Kim and van Zyl

The algorithm is based on concepts developed in Kim 
and van Zyl 2009. After the SMAP radar data are accu-
mulated for a moderate time period (nominally 6 months), 
an expression will be derived to relate the backscattering 
cross-section to soil moisture as

       
where the normalized radar cross-sections are expressed 
in decibels. Since this expression depends on the biomass 
level, the cross-polarization will be used to compensate 
the biomass variation over time; how this will be imple-
mented is being studied. f ( ) is given by

The two coefficients for each pixel will be determined 
using the expected minimum and maximum values for soil 
moisture and the time-series backscattering cross-section 
data. The minimum and maximum values for soil moisture 
may be estimated using soil porosity models that are com-
monly available. Accommodating different vegetation phe-
nology during the implementation of the above relationship 
remains as a task. The obvious assumption contained in 
Equation 32 is that there is a linear relationship between 
the radar cross-sections and the soil moisture. However, 
simulated data suggests that this relationship is nonlinear. 
Ground radar and airborne data will be used to derive the 
final expression for the function f (shh, svv). The slowly 
varying backscattering cross-section component due to 
the biomass variation will be estimated and compensated 
using the cross-polarization backscattering cross-section. 
Ground radar measurements will help derive the expres-
sion before the SMAP instrument is launched. However, 
since the ground measurements are limited, various 
vegetation environments will be considered with simulated 
data. When the two extreme conditions (completely dry 
and wet) of the soil moisture and radar backscatter are 
known exactly, a test with a corn field experiment shows 
that the soil moisture may be retrieved with an error of 
0.026 cm3/cm3. When the errors in the two extreme 
values are simulated with the random noise, the retrieval 
error reaches 0.05 cm3/cm3 (Kim and van Zyl 2009).

E. Algorithm Performance and Error Budget

The performance of the baseline algorithm is evaluated 
in the pre-launch phase using (1) global representative 
simulations on the SMAP Testbed at JPL and (2) field ex-
periment data that offer the radar backscatter and ground 
truth observations. The implementation of the complete 
pre-launch Cal/Val process is described in the “SMAP 
Calibration and Validation Plan” (JPL D-52544, Apr. 2011). 

(32)f (shh, svv) = C0 + C1
shh + svv

2

The performance of the retrieval approach is evaluated 
below. The main sources of retrieval error are (a) radar 
measurement error (speckle and calibration of thermal 
effect after removing any drift), (b) data-cube modeling 
error including the contribution from the scheme of using 
the VWC to represent many vegetation parameters,  
(c) dielectric model error that is estimated to be about 
0.02 cm3/cm3 (Mironov et al. 2009), and (d) spatial hetero-
geneity in vegetation. The source (a) is simulated below 
by modeling the radar measurement error as a Gaussian 
random variable (Figure 7.15, Ulaby et al. 1986b) with 
a Monte Carlo approach, because an operating SMAP-
like radar is not available at present. The assessment of 
the sources (b–c) will be presented below using a field 
campaign dataset over grass vegetation. Unlike the radar 
measurement uncertainty, statistical characterization (e.g., 
zero-mean Gaussian distribution) of data-cube error and 
dielectric model error is not straightforward. Furthermore, 
separating the field validation result into the contributions 
by the individual sources (data cube, VWC, and dielectric 
conversion) would require dedicated experiments that are 
not available at present. The source (d) may occur within 
a 3-km SMAP pixel, but not in the homogeneous field 
environment used below. The retrieval algorithm to be 
implemented for SMAP will allow for pixel heterogeneity 
by modeling heterogeneous pixel scattering as a combi-
nation of each of the component class data cubes.

For the performance analysis through simulation, the 
specified error allocation of SMAP radar measurements 
was used. The total error in s0 measurement for a  
3-km × 3-km pixel is 0.71 dB (HH and VV) and 1.06 dB 
(HV) at the worst-case cross-track position after combin-
ing fore-scan and aft-scan records, and for a scene s0 of 
–25 dB (HH and VV) and –30 dB (HV). At the best-case 
cross-track position, s0 errors are 0.58 dB (HH and VV) 
and 1.01 dB (HV). The “total” error includes speckle, 
residual calibration, and residual radio-frequency contam-
ination. The noise floor allocation varies from –28.5 dB to 
–31.5 dB (very similar between co- and cross-polariza-
tion) depending on the swath position. The “current best 
estimate” of radar measurement errors is better than the 
allocation. According to the analysis of the theoretical 
antenna pattern for SMAP, the cross-coupling of co-polar-
ization into cross-polarization is estimated to 0.2 dB.

The details of the Monte Carlo simulation are available 
in Kim et al. (2013). The retrieval results are presented in 
Figure 50 for the grass and shrub data cubes. Each  
case of the Monte Carlo analyses is defined by different 
values of dielectric constant, surface roughness, and 
VWC. In the grass case, the retrieval error is better than  
0.06 cm3/cm3 except for VWC greater than 2 kg/m2 and 
mv larger than 0.3 cm3/cm3. Generally the mv retrieval 
error increases with the surface soil moisture, reflecting 
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the reduced sensitivity (Kim et al. 2012a). Similarly, the 
mv retrieval error increases with VWC as a result of the 
attenuation by vegetation. In the shrub case (Figure 50), 
in comparison, the woody stems produce double-bounce 
scattering that becomes stronger when the soil surface 
becomes wet and a sizable amount of stems exist. As a 
result, at mv of about 0.3 cm3/cm3 in the shrub case, the 
mv retrieval becomes more accurate for higher VWC; such 
is not the case for grass or the dry-soil shrubs.

The results of the Monte Carlo study are organized as a 
function of VWC in Figure 51 covering a large variety of 

land cover classes. For non-woody classes such as grass 
and soybean, the mv retrieval error increases with VWC 
due to the vegetation attenuation; for woody-vegetation 
(shrub and woody savanna), the mv retrieval improves 
with VWC, by benefiting from the double bounce process.  
The double-bounce process depends strongly on ground 
soil moisture and ground reflectivity, thus allowing the soil 
moisture retrieval. Corn, evergreen needle, and deciduous 
broadleaf classes also have a dominant vertical structure 
for trunks or stems, and the double-bounce mechanism 
again helps the retrieval. The two forest classes (evergreen 
broadleaf and deciduous needle) were modeled to have 
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Figure 51. Monte Carlo simulation of the radar measurement error (13% 
for the signal, 0.5 dB) on the data-cube mv retrieval. Each point on a 
curve is an average of mv  RMSE from the Monte Carlo simulation (e.g., 
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prominent non-vertical trunk structures according to the 
current simulation, producing a weak double-bounce 
return. Furthermore, the geometry of the branch structure 
within the canopy layer becomes much denser as VWC 
increases, compared with the conifer case. As a result, the 
attenuation of the soil moisture signal by the canopy layer 
increases with VWC. Therefore, the sensitivity of s0 to 
mv decreases and mv retrieval deteriorates. The apparent 
difference in retrieval performance among the five forest 
classes is due also to representing a forest class with only 
a few species (because of limited experimental data). In 
the future, the forest classes will be further divided into 
more specific ones and the retrieval results fine-tuned.  
The bare surface case shows retrieval performance better 
than the above vegetated cases (0.028 cm3/cm3 at  
0 kg/m2 VWC for the soybean class in Figure 51). The 
retrieval errors increase with VWC for grass and soybean, 
because s0 becomes less sensitive to mv towards high 
VWC. The worst-case scenario for SMAP radar measure-
ment noise is 0.7 dB, in which case the retrieval RMSE 
in Figure 51 increases slightly by about 0.005 cm3/cm3 
for most of the IGBP classes, when model errors are not 
considered in the budget.

F. Algorithm Evaluation: Field Campaign Data

The baseline algorithm was tested with 

•	 Scatterometer data collected over four bare surface 
sites near Ypsilanti, Michigan during a 2-month period 
(Oh et al. 2002). The observed mv at four sites ranges 
from 0.06 to 0.3 cm3/cm3. The surface roughness is 
time-invariant at each site, but changes from 0.55 cm 
to 3.5 cm rms height from site to site and the ratio of 
correlation length to the roughness varies from 4 to 
15.

•	 The airborne Passive/Active L-band Sensor (PALS) 
data collected over pasture fields during the 1999 
Southern Great Plains (SGP99) experiment in the 
Little Washita watershed region, Chichasha,  
Oklahoma, USA (Colliander et al. 2012; Jackson  
et al. 1999). Across six fields, surface roughness 
changed from 0.3 to 0.9 cm, and VWC varied from 
0.1 to 0.5 kg/m2. In situ soil moisture varied from  
0.05 to 0.3 cm3/cm3 temporally and spatially.

•	 UAVSAR data over seven agricultural types and 50 
fields in Winnipeg, Canada in 2012 (McNairn et al. 
2013) (SMAPVEX12). Over the 2-month period, the 
soil moisture was recorded from dry to 0.6 cm3/cm3. 
The surface roughness is time-invariant at each site, 
but varies from 0.3 cm to 2.0 cm RMS height from 
site to site and the ratio of correlation length to the  
roughness varies from 6 to 88. The crops grew fully  
from seeds and the VWC reached maximum (e.g.,  
4.2 kg/m2 for corn) during the observed time series.

Figure 52(a) shows that the bare surface retrieval has an 
RMSE of 0.044 cm3/cm3 after compiling the retrievals 
over the four in situ locations. The retrieval over the pas-
ture surface has an RMSE of 0.054 cm3/cm3 (Figure 52b). 
The slightly larger error for the pasture surface may reflect 
the effect of vegetation. 
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Two of SMAP’s candidate algorithms were applied to the 
data from the SMAPVEX12 campaign, the baseline and 
the change index method by Wagner et al. (Figure 53). To 
apply the baseline algorithm, the UAVSAR data were nor-
malized to SMAP’s 40° angle by the histogram method of 
Mladenova et al. (2012). The correlation between retrieved 

and measured mv was higher when biomass was stable 
over time (spring wheat). For bean crop, the retrieved in-
dex (based on VV) correlated with the measured mv better 
than the data-cube retrieval (based on HH and VV). This 
suggests that VV backscatter responds to relative chang-
es in in situ mv more strongly than when dual-polarizations 

Figure 53. Preliminary retrieval of soil moisture for one field per crop 
type where SMAP’s forward scattering models are available: in situ 
moisture (red), baseline retrieval (black), and change index (blue). The 
legend (top to bottom) reads: crop type and field number, RMS error of 

the data-cube retrieval in cm3/cm3 units, and correlation (r) between 
retrieval and in situ mv . The retrieved change index was scaled to match 
in situ mv . (From McNairn et al. 2013.) 
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RMSE (Cube) = 0.053
r (Cube) = 0.45
r (Index) = 0.66

Corn 24
RMSE (Cube) = 0.037
r (Cube) = 0.74
r (Index) = 0.53

Pasture 21
RMSE (Cube) = 0.056
r (Cube) = 0.62
r (Index) = 0.60

Wheat 41
RMSE (Cube) = 0.086
r (Cube) = 0.96
r (Index) = 0.95

are used together. However, both VV and HH backscatter 
are needed to retrieve absolute soil moisture. Corn data 
cubes were able to correct for the effect of the significant 
temporal change in vegetation; as a result, the correlation 
of its retrieval is better than that of the index approach.  
The errors in the baseline retrieval ranged from 0.037 to 
0.086 cm3/cm3 over these four fields. 

Based on the above results, the error budget is derived in 
Table 13. The Monte Carlo analyses presented in Fig-
ure 51 assess the errors due to the Kp noise and the veg-
etation water content uncertainty. However, the analysis 
does not capture forward model errors. The conversion 

from dielectric constant to soil moisture is accurate to 
about 0.02 cm3/cm3 (Mironov et al. 2009), which would 
not affect the total error budget when added to the total 
error by root square sum. The in situ evaluation with the 
airborne radar data described in Figure 52 and Figure 53 
accounts for the errors associated with data-cube mod-
eling and dielectric conversion (as well as the errors in 
in situ measurements of soil moisture, both instrumental 
and scaling). A small degree of heterogeneity exists within 
the airborne radar footprint, which would also contribute 
to the in situ evaluation result. The effect of scaling and 
heterogeneity within the 3-km pixel will be studied further.
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VI. Ancillary Data

Ancillary data are data acquired from external sourc-
es that are required as inputs to the SMAP retrieval 
algorithms in generation of the SMAP data products.  
Ancillary data needed by the SMAP mission fall into two 
categories: (a) static ancillary data, which do not change 
substantially over the course of the mission, and (b) dy-
namic ancillary data that require periodic updates on time 
frames ranging from seasonal to daily. Static data include 
parameters such as permanent masks (land / water / 
forest / urban / mountain), the grid cell average eleva-
tion and slope derived from a DEM, permanent open 
water fraction, and soils information (primarily sand and 
clay fraction). Dynamic ancillary data include land cover, 
surface roughness, precipitation, vegetation parame-
ters, and effective soil temperatures. Ancillary data are 
by definition external to SMAP. However, there is some 
sequential transfer of parameters between algorithms as 
needed for downstream processing. For example, the 
SMAP HiRes radar data product provides key pieces of 
dynamic information to the L2_SM_P algorithms such 
as open water fraction and a frozen ground flag (see 
L2_SM_A and L3_FT_A ATBDs).

Table 14 lists the 14 ancillary data parameters required 
by one or more of the SMAP L2/3 product algorithms 
along with the primary source of information for that 
parameter (in all cases, there are alternative options for 

Error sources

Table 13. Error budget for the baseline algorithm.

A) Kp 0.75-1.0 dB 1s error 
(1s, co-pol, fore look)

B) Vegetation water content 
error (1s, 10%)

C) Forward model error (data 
cubes and heterogeneity)

D) Dielectric model uncertainty

E) Soil texture: 5% error

mv retrieval error up to VWC  
of ~3 kg/m2

Outer
swath edge

Inner
swath edge

0.035 0.043

The Kp and VWC errors are modeled with Gaussian random vari-

ables with zero mean. The soil moisture retrieval error is obtained 

from the Monte Carlo analysis in Figure 51. Number of the pair 

of HH and VV radar backscatter used as time-series input (6, 

equivalently 18 days).

Budget (cm3/cm3)

0.01

0.04

0.02

0.004

0.058 0.063

these parameters from climatological datasets, forecast 
models, or datasets acquired in past or current missions). 
The choice of which ancillary dataset to use for a par-
ticular SMAP product is based on a number of factors 
including its availability and ease of use, its inherent error 
and resulting impact on the overall soil moisture or freeze/
thaw retrieval accuracy, and its compatibility with similar 
choices made by the SMOS mission. Latency, spatial res-
olution, temporal resolution, and global coverage are also 
important. The choice of a primary source for each of the 
fourteen ancillary data parameters is fully documented in 
individual SMAP Ancillary Data Reports which are available 
to the user community.

In most cases, the raw ancillary data must go through a 
number of pre-processing steps to convert them to the 
appropriate quantity and format for use by the SMAP 
algorithms. For example, the NDVI must be converted into 
vegetation water content, ECMWF or GMAO temperatures 
must be temporally interpolated to the time of SMAP ob-
servations, and all of the static ancillary data must be res-
ampled to the same 3-, 9-, and 36-km EASE grids as the 
SMAP output products. While the exact types of ancillary 
datasets needed are specific to a given retrieval algorithm, 
all standard L2/3 products require some ancillary datasets 
to meet the specified retrieval accuracies.  
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5. The Value-Added L4_SM Soil Moisture Product

I. Motivation and Overview

The primary SMAP measurements, land surface micro-
wave emission at 1.41 GHz and radar backscatter at a 
frequency tunable from 1.215 to 1.300 GHz are directly 
related to surface soil moisture (in the top 5 cm of the soil 
column). However, several of the key applications targeted 
by SMAP (e.g., in agriculture and in short-term climate 
forecasting, among others) require knowledge of root 
zone soil moisture (defined here as soil moisture in the 
top 1 m of the soil column), which is not directly linked to 
SMAP observations. The foremost objective of the SMAP 
Level 4 Surface and Root Zone Soil Moisture (L4_SM) 
product is to provide estimates of root zone soil moisture 
that are informed by and consistent with SMAP observa-
tions. The second main objective of the L4_SM product is 
to provide spatially and temporally complete soil moisture 
to fill the spatial and temporal gaps in SMAP observations 
that are due to orbit and land surface characteristics. 
SMAP observations are only available in 1,000-km-wide 
swaths that cover the Earth with a 2–3 day repeat fre-
quency and contain only limited soil moisture information 
in regions of dense vegetation or mountainous topogra-
phy. To address these limitations in sensing depth and 
coverage, the L4_SM algorithm merges lower-level SMAP 
data with model estimates in a soil moisture data assimi-
lation system.

At the heart of the data assimilation system is a land 
surface model that monitors the evolution of soil moisture, 
snow, and temperature states as they respond to mete-
orological drivers such as rainfall and incident radiation.  
The land surface model is driven with observation-based 
precipitation, which is the most important driver for soil 
moisture. The model also encapsulates knowledge of key 
land surface processes, including the vertical transfer of 
soil moisture between the surface and root zone reser-
voirs. In essence, the land model is designed to conserve 
both water (converting precipitation inputs into evapora-
tion, runoff, and storage change) and energy (converting 
incident radiation into outgoing radiation, latent heat flux, 
sensible heat flux, storage change, and other miscella-
neous terms). Given realistic forcing, these conservation 
principles ensure at least some first-order reliability in the 
simulation products — when it rains, for example, the 
modeled soil will typically get wetter. Finally, the model 
provides spatially and temporally complete estimates 
that serve as background information in the assimilation 
update procedure. 

The assimilation updates of the L4_SM algorithm merge 
the model estimates with SMAP observations using 
weights that consider the uncertainties of each, resulting 
in a product that is superior to satellite or land model data 
alone. In the course of the data assimilation process, the 
subsurface assimilation updates (along with the subsur-
face transport formulations in the land model) effectively 

advect SMAP-based surface soil moisture information into 
deeper soil levels. Error estimates for the L4_SM product 
are generated as a by-product of the data assimilation 
system. This chapter provides a detailed description of 
the SMAP L4_SM product and its algorithm. Chapter 7 
includes details on the validation of the L4_SM product.

II. Assimilation System and Algorithm Flow

A. Algorithm Overview

The L4_SM algorithm consists of two key elements 
adapted from the Goddard Earth Observing Model Sys-
tem, Version 5 (GEOS-5): (i) the GEOS-5 Catchment land 
surface model, which is a numerical description of the 
water and energy transport processes at the land–atmo-
sphere interface, augmented with a model that describes 
the land surface microwave radiative transfer, and (ii) the 
GEOS-5 ensemble-based land data assimilation system, 
which is the tool that will be used to merge SMAP obser-
vations with estimates from the land model as it is driven 
with observation-based surface meteorological forcing 
data. The latter includes a soil moisture analysis based on 
the ensemble Kalman filter and a rule-based freeze/thaw 
analysis. Downscaled (9-km) brightness temperatures 
(L2_SM_AP) will be assimilated when and where available, 
supplemented with 36-km brightness temperature ob-
servations (L1C_TB; ascending and descending passes) 
where downscaled data are unavailable. Moreover,  
3-km freeze/thaw observations (L3_FT_A) will also be 
assimilated.  

After initialization of the system with estimates derived 
from a model spin-up procedure, the L4_SM algorithm 
steps recursively through time, alternating between model 
forecast (FCST) and analysis (ANA) steps. Figure 54 
provides an overview of one forecast and analysis cycle.  
The algorithm begins with a Catchment model ensemble 
forecast, initialized with the analysis at time t–1 and valid 
at time t (labeled FCST(t) in Figure 54). For each 9-km 
model grid cell, the forecast freeze/thaw (F/T) state is 
first compared to the corresponding SMAP freeze/thaw 
observations (aggregated to the resolution of the model 
forecast). If the Catchment model forecast and the SMAP 
observations disagree, the model states in the 9-km grid 
cell in question are corrected towards the observations 
in a freeze/thaw analysis. If the forecast and observed 
freeze/thaw states agree and indicate non-frozen condi-
tions, the grid cell in question is included in a distributed 
soil moisture analysis. If the model indicates non-frozen 
conditions and freeze/thaw observations are not available, 
the grid cell is also included in the soil moisture analysis. 
Otherwise, the analysis step is skipped for the grid cell 
in question. After the analysis has been completed for all 
grid cells, the algorithm continues with a model forecast 
to time t+1, and so on.
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B. The NASA GEOS-5 Catchment Land Surface 
Model

Model soil moisture is obtained from integrations of 
the NASA Catchment Land Surface Model (hereinafter 
Catchment model; Koster et al., 2000; Ducharne et al., 
2000). Although in standard practice the basic compu-
tational unit of the Catchment model is the hydrological 
catchment (or watershed), for SMAP the Earth-fixed 9-km 
EASE2 grid (same as that of the L2_SM_AP product) will 
be used to define the surface elements. The conceptual 
physics underlying the model, which focus on topograph-
ical variations smaller than the 9-km scale, are still import-
ant and valid for such a surface element definition.

Figure 55 provides a simplified picture of the three prog-
nostic variables related to soil moisture: catchment deficit 
(CATDEF), root zone excess (RZEXC), and surface excess 
(SRFEXC). In effect, the vertical profile of soil moisture at 
each point in each computational unit (related to CATDEF; 
see Figure 55) is determined by the equilibrium soil mois-
ture profile from the surface to the (spatially varying) water 
table (defined by a balance of gravity and capillary forces) 
and by two additional variables that describe deviations 
from the equilibrium profile: the average deviation in a 1-m 
root zone layer (RZEXC), and the average deviation in a 
5-cm surface layer (SRFEXC). A single “root zone” depth 
of 1 m is chosen here to make the SMAP product more 

straightforward; in nature, the depths tapped by roots 
vary with vegetation type.

As indicated in the bottom left of Figure 55, the Catch-
ment model differs from traditional layer-based models 
by including an explicit treatment of the spatial variation 
of soil water and water table depth within each compu-
tational unit (that is, within each 9-km EASE grid cell for 
L4_SM) based on the statistics of the catchment topog-
raphy. This spatial variation enters into the calculation of 
moisture diffusion between the root zone and lower soil 
moisture storage. Extensive preprocessing produces a 
pre-computed functional relationship between RZEXC, 
CATDEF, and the amount of moisture transferred between 
the two in a given time step, a functional relationship that 
is based on a spatially distributed set of one dimension-
al Richard’s equation calculations, each representing 
moisture transport at some location in the catchment and 
each performed on a soil column fitted with high vertical 
resolution. The transfer of moisture between the 0–5 cm 
surface layer and the root zone, of particular relevance to 
SMAP, is computed similarly, though without a spatially 
distributed component; a highly-resolved, one-dimension-
al representation of the root zone is used to pre-compute 
a functional relationship between the moisture variables 
and the amount of moisture transferred between SRFEXC 
and RZEXC within the time step.

The treatment of spatial heterogeneity also allows the 
diagnostic separation of the catchment into saturated,  
unsaturated, and wilting sub-grid areas. The sizes of 
these three sub-grid areas vary dynamically; wetter con-
ditions, for example, expand the saturated sub-grid area 
and reduce the wilting sub-grid area (if it is not already 
zero). The surface energy balance is computed separately 
for each sub-grid area using physics specific to the corre-
sponding hydrological regime. This entails the monitoring 
of independent prognostic surface temperature variables 
for each sub-grid area (TC1, TC2, and TC4). The three 
surface temperature prognostic variables interact with 
an underlying heat diffusion model for soil temperature 
(consisting of six layers with depths equal to about 0.1, 
0.2, 0.4, 0.75, 1.5, 10 m from top to bottom) that is com-
mon to all three sub-grid areas. The model prognostic 
variables for this heat diffusion model component are the 
ground heat contents associated with the six soil layers 
(GHT1, GHT2, …, GHT6). 

Surface runoff processes are computed separately for 
each sub-grid area, again using hydrological regime-spe-
cific physics, whereas subsurface baseflow is computed 
directly from the diagnosed spatial distribution of water 
table depth. A snow model component describes the 
state of snow pack in terms of snow water equivalent, 
snow depth, and snow heat content (three layers for 
each variable). The time step for the model integration is 
20 minutes.  

Freeze/thaw  
Analysis:

Update Soil  
and Snow  

Heat Content

Figure 54. L4_SM algorithm overview. See Figure 57 for a flowchart of 
the soil moisture analysis.
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Figure 55. Unique elements of the Catchment land surface model 
related to the diffusion of moisture between the 0–5 cm surface zone 
and the remainder of the soil profile. Shown are descriptions of the 
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columns.

three moisture prognostic variables (CATDEF, RZEXC, and SRFEXC) and 
an indication of how the transfer of moisture between the variables is 
computed.

A salient feature of the land model integration is that it 
uses meteorological forcing inputs that rely on observed 
data as much as possible. Reichle et al. (2011), Yi et al. 
(2011), and Holmes et al. (2011) provide a comprehensive 
assessment of large-scale land surface estimates derived 
with the Catchment model as part of the Modern-Era 
Retrospective Analysis for Research and Applications 
(MERRA) reanalysis (Rienecker et al., 2011) and demon-
strate that the Catchment model is a state-of-the-art 
global land surface model.  

C. The NASA GEOS-5 L-band Microwave Radiative  
Transfer Model

The Catchment model has been augmented with a micro-
wave radiative transfer model that transforms the simulat-
ed surface soil moisture and temperature fields into model 
estimates of L-band brightness temperature (at the 9-km 
scale). Like the L2_SM_P and L2_SM_AP algorithms, 
the L4_SM algorithm uses the “tau-omega” model, an 
approximation of the radiative transfer processes that is 
appropriate for low frequency microwave emission. In this 
model, “tau” is the vegetation optical depth and “omega” 
is the scattering albedo. A layer of vegetation over the 
soil attenuates the emission from the soil and adds to the 
total radiative flux with its own emission. Assuming that 

scattering within the vegetation is negligible at L-band 
frequencies, the vegetation may be treated mainly as an 
absorbing layer for the soil moisture signal.  

The parameterizations of the microwave model represent 
a trade-off between the need to adequately simulate the 
key effects of surface characteristics on microwave sig-
natures at the spatial scale of interest, and the need for a 
sufficiently simple representation for application to satellite 
retrieval algorithms. The microwave model incorporates 
the effects of dynamic features (including surface soil 
moisture and soil temperature), and static or slowly-vary-
ing features such as soil texture, soil surface roughness, 
land-cover and vegetation type, and vegetation water 
content. A comprehensive description of the model is pro-
vided by De Lannoy et al. (2013). 

D. The Ensemble Kalman Filter

The L4_SM algorithm is built on the ensemble Kalman 
filter (EnKF) — a Monte Carlo variant of the Kalman filter 
(Evensen 2003). The idea behind the EnKF is that a small 
ensemble of model trajectories captures the relevant parts 
of the error structure. Each member of the ensemble 
experiences perturbed instances of the input forcing fields 
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(representing errors in the forcing data) and/or randomly 
generated noise that is added to the model parameters 
and prognostic variables (representing errors in model 
physics and parameters). The error covariance matrices 
that are required for the filter update can then be diag-
nosed from the spread of the ensemble at the update 
time. The EnKF is flexible in its treatment of errors in mod-
el dynamics and parameters. It is also very suitable for 
modestly nonlinear problems and has become a popular 
choice for land data assimilation (Andreadis and Letten-
maier 2005; Durand and Margulis 2008; Kumar et al. 
2008a,b; Pan and Wood 2006; Reichle et al. 2002a,b; 
Zhou et al. 2006).  

The EnKF works sequentially by performing in turn a mod-
el forecast and a filter update (Figure 56). Formally, the 
forecast step for ensemble member i can be written as

  xt,i
− = f(xt-1,i

+, qt,i),   

where xt,i
− and xt-1,i

+ are the forecast (denoted with −) and 
analysis (denoted with +) state vectors at times t and t–1, 
respectively, of the i-th ensemble member. The model 
error (or perturbation vector) is denoted with qt,i and its 
covariance with Qt. Each ensemble member represents 
a particular realization of the possible model trajectories 
with certain random errors in model parameters and/or a 
particular set of errors in forcing.  

obtained as xt,i
+ = xt,i

− + Δxt,i. The Kalman gain matrix Kt is 
given by 

         Kt = Pt Ht
T ( Ht Pt Ht

T + Rt)-1,   

where Pt is the forecast error covariance (diagnosed from 
the ensemble xt,i

−), Rt is the observation error covariance, 
and superscript T denotes the matrix transpose.  Simply 
put, the Kalman gain Kt represents the relative weights 
given to the model forecast and the observations based 
on their respective uncertainties, along with the error 
correlations between different elements of the state vector. 
If the system is linear, if its model and observation error 
characteristics satisfy certain assumptions (including 
Gaussian, white, and uncorrelated noise), and if the input 
error parameters are correctly specified, the Kalman gain 
of Eq. (35) is optimal in the sense of minimum estima-
tion error variance. In other words, the updated state is 
mathematically the best possible estimate of the state 
given the observations, the model prediction, and the 
estimated errors of both. Estimates of the model prog-
nostic or diagnostic variables can be obtained at any time 
from the ensemble mean. The reduction of the uncertainty 
resulting from the update is reflected in the reduction of 
the ensemble spread. Note that the ensemble of model 
trajectories in the EnKF naturally yields error estimates for 
the assimilation products.

E. Soil Moisture Analysis

Figure 57 summarizes the soil moisture analysis of the 
L4_SM algorithm. The state vector x for the soil moisture 
analysis consists of seven Catchment model prognostic 
variables (catchment deficit, root zone excess, surface  
excess, three surface temperature prognostic variables 
[one each for the saturated, unsaturated, and wilting 
sub-grid areas], and the first-layer ground heat content; 
section II.B) at each computational element (9-km grid 
cell) that is included in the soil moisture analysis (see also 
Figure 55). Formally, the forecast state vector for the soil 
moisture analysis is

(33)

(34)

(35)
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ensemble of states 
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i
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i

Update ensemble 
members xi
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Figure 56. The ensemble Kalman filter (EnKF). −x− =

x1

[ x2

xN9

... [
−

−

−

where x j =

SRFEXC_FCSTj 

RZEXC_FCSTj

CATDEF_FCSTj 

TC1_FCSTj 

TC2_FCSTj

TC4_FCSTj 

GHT1_FCSTj 

[ [ (36),,

With the observations available at time t, the state of each 
ensemble member is updated to a new value. First, the 
filter update produces increments at time t that can be 
written as
  Δxt,i = Kt (yt,i – Ht xt,i

−),  

where yt,i denotes the observation vector (suitably 
perturbed) and Ht is the observation operator (which 
is written as if it was linear for ease of notation, but in 
practice the update is solved without explicitly computing 
Ht, [Keppenne 2000]). Next, the analyzed state vector is 

N9 is the number of 9-km grid cells included in the soil 
moisture analysis, and j=1...N9. For clarity, the subscripts 
for time and ensemble member are omitted.  

As mentioned above, the L4_SM baseline algorithm 
assimilates brightness temperatures in H- and V-polariza-
tion (TBH and TBV, respectively, in Figure 57) downscaled 
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Figure 57. The L4_SM soil moisture analysis. See text for details.

L4_SM Land Model

FCST(t)
9 km

Aggregate

Clim. Mean
Adjustment

No

Yes

TBH, TBV
9 km

36 km

Clim. Mean
Adjustment

9 km

TBH, TBV (L2_SM_AP)
9 km

ANA(t)
9 km

Available? TBH, TBV  
(L1C_TB)

36 km

Clim. Mean
Adjustment

Clim. Mean
Adjustment

9 km

36 km

SMAP Observations

Diff.

Diff.36 km

FCST(t+1)

3d EnKF
Update

Innovations
(OBS – FCST)
9 km, 36 km

to 9-km resolution when and where available from the 
L2_SM_AP product. However, high-resolution backscatter 
data are not always available to generate the downscaled 
brightness temperatures. For example, during afternoon 
overpasses, high-resolution radar data are collected 
only north of 45°N because of resource limitations. Even 
if high-resolution backscatter data are available, the 
L2_SM_AP algorithm may not always provide downscaled 
brightness temperatures. If, for a given time and location, 
downscaled (9-km) brightness temperatures are not avail-
able, the 36-km brightness temperature values from the 
L1C_TB product in H- and V-polarization will be assimilat-
ed. Note that we will not assimilate the 36-km brightness 
temperatures for a given time and location if downscaled 
(9-km) values are available for that time and location. 

L-band brightness temperatures generated by the Catch-
ment model and its associated microwave radiative trans-
fer model described above have been calibrated (sepa-
rately for each location) to match the climatology of SMOS 
observations (De Lannoy et al. 2013). While the model 
calibration yields largely unbiased modeled brightness 
temperatures (with respect to SMOS), residual model bias-
es remain and are primarily related to seasonal variations 
in bias. Moreover, it is not clear to what extent the SMOS 
observations are impacted by low-level RFI and may 
themselves be biased. These unavoidable biases in the 
model and the observations must be addressed as part 
of the data assimilation system. To this end, the observed 

and modeled brightness temperatures will be adjusted by 
subtracting their respective seasonally varying, climato-
logical mean values (separately for H- and V-polarization) 
before the innovations are computed (Figure 57). Since 
brightness temperature is strongly impacted by surface 
temperature, it is important to resolve the seasonal and 
diurnal cycles of the climatology. The mean adjustment 
is therefore based on the multi-year mean value of the 
observed or modeled brightness temperature for a given 
location, day-of-year, and overpass time-of-day. SMOS 
brightness temperatures provide a useful early estimate 
of the SMAP brightness temperature climatologies. The 
SMOS climatology will therefore be used initially in L4_SM 
production until sufficient SMAP observations have been 
accumulated. Thereafter, a SMAP-only climatology will be 
used for recalibrating the land model and for generating 
and reprocessing the L4_SM product.  

Following Eq. (34), the innovations vector (y – Hx−) will 
thus be computed by differencing the H- and V-polariza-
tion brightness temperatures (after the mean adjustment) 
from the observations and the Catchment model forecast. 
If downscaled (9-km) brightness temperature are available 
for a given 36-km grid cell, up to 2∙(36/9)2=32 elements 
from that grid cell are included in the innovations vector 
(up to 16 elements each for 9-km TBH and 9-km TBV).  
Otherwise, the 36-km grid cell in question only contributes 
up to two elements to the innovations vector (36-km TBH 
and 36 km TBV).  
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The corresponding vector of model predictions of the 
9-km and 36-km brightness temperature contains all 
the processing steps required to map the state vector x 
(Eq. [36]) into a model prediction of the observed values 
that can then be directly differenced with the observation 
vector y. The observation operator thus includes (i) the 
transformation of soil moisture and soil temperature fields 
into brightness temperatures via the microwave radiative 
transfer model at 9-km resolution, (ii) the aggregation from 
9 km to 36 km only for locations where 36-km brightness 
temperature observations from L1C_TB are assimilated, 
and (iii) the climatological mean adjustment. 

Finally, the increments are computed in the units of the 
Catchment model prognostic variables following Kep-
penne 2000. The L4_SM algorithm will be implemented 
with three-dimensional (“3d”) updates (Reichle and Koster  
2003; Reichle et al. 2013), that is, the increments for a 
given 9-km grid cell are affected by all observations within 
a certain radius of influence, and not just by the obser-
vations that cover the grid cell in question. The radius of 
influence for the “3d” algorithm is determined by the spa-
tial error correlation scales and is expected to be no more 
than a few hundred kilometers (Reichle and Koster  2003). 
It has been shown that the ensemble filter works ade-
quately with 12 ensemble members (Reichle et al.  2007; 
Liu et al. 2011). To reduce sampling errors, at least 24 
ensemble members will be used (resources permitting).

F. Freeze/Thaw Analysis

The assimilation of SMAP freeze/thaw state observations 
is conceptually similar to the assimilation of snow cover 
observations. In both cases, the observed variable is, 
at least at satellite footprint scale, essentially a binary 
measurement. Generally, binary measurements cannot 
be assimilated with the EnKF, because the EnKF requires 
continuous variables (such as water or heat reservoirs).  
This restriction can be circumvented, however, for snow 
cover observations because in land models, fractional 
snow cover for a given model grid cell can be related 
to a continuous prognostic variable (such as SWE) via 
a snow depletion curve. By aggregating high-resolution 
measurements into fractional snow cover observations (at 
the scale of the land model) the EnKF could still be used 
(De Lannoy et al. 2010; De Lannoy et al. 2011). The same 
does not apply to freeze/thaw observations, because 
there is no equivalent to the snow depletion curve for the 
land model’s freeze/thaw state. Consequently, for the 
assimilation of freeze/thaw observations in the baseline 
L4_SM algorithm we adapt the rule-based (non-EnKF) 
approaches that have been developed to assimilate snow 
cover observations (Rodell and Houser 2004; Zaitchik and 
Rodell 2009).  

Because the radar and radiometer measurements are  
not informative of soil moisture under frozen soil condi-
tions, a given 9-km grid cell is never included simultane-
ously in the freeze/thaw analysis and the soil moisture 
analysis (Figure 54). In particular, a given 9-km grid cell 
will be included in the soil moisture analysis only if both 
the observations and the model indicate thawed condi-
tions. If the observations and the model agree on frozen 
conditions, there will be no further analysis step for the 
9-km grid cell in question. If the model forecast and the 
corresponding SMAP observations disagree on the freeze/
thaw state, that is, if the model indicates frozen conditions 
and the observation indicates thawed conditions (or vice 
versa), the Catchment model prognostic variables will 
be adjusted towards the observed freeze/thaw state in a 
freeze/thaw analysis. Adjustments will primarily be made 
to the forecast surface soil temperatures (TC1, TC2, TC4) 
and the soil heat content.

III. Ancillary Data Requirements

Aside from SMAP observations, the L4_SM system 
requires initialization, parameter, and forcing inputs for 
the Catchment land surface model and the microwave 
radiative transfer model, as well as input error parameters 
for the ensemble-based data assimilation system. This 
section provides an overview of the system’s ancillary data 
requirements.

A. Catchment Land Surface Model and Microwave  
Radiative Transfer Model Parameters

The Catchment land surface model requires topography, 
soil, and vegetation data at all computational elements in 
the chosen spatial discretization. A full set of these Catch-
ment model parameters is available as part of the GEOS-5 
modeling system (Rienecker et al., 2008). To the extent 
possible, Catchment model parameters will be adjusted 
for consistency with land surface parameters that are 
used by other SMAP products. The microwave radiative 
transfer parameters of the GEOS-5 modeling system are 
calibrated such that the long-term climatology of the mod-
eled brightness temperatures matches that of the SMOS 
observations (De Lannoy et al. 2013). Key model ancillary 
parameter inputs are provided as part of the L4_SM data 
product (section IV).

Some of the soil parameters of the Catchment model may 
differ from those of the microwave radiative transfer model 
because the former requires consistent surface and root 
zone information whereas the latter requires only surface 
information, which is more readily available. Similarly, the 
vegetation class inputs for the Catchment model and  
the microwave radiative transfer model may differ be-
cause the two model components currently use slightly 
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different vegetation classifications. Moreover, microwave 
model parameters may differ between the L4_SM and the  
Level 2 algorithms due to algorithm-specific requirements.  
Most importantly, data assimilation requires unbiased es-
timates of modeled brightness temperatures with respect 
to the observations and therefore requires that microwave 
model parameters used for L4_SM are calibrated specifi-
cally for the L4_SM system. The SMAP team also has an 
ongoing task to examine consistency in the tau-omega 
model parameterizations between L2 and L4 soil moisture 
products. In any case, we expect that parameter incon-
sistencies between SMAP data products will be minor 
and will have a minimal impact on the L4_SM product.

B. Surface Meteorological Data

The Catchment model is forced with surface meteorologi-
cal data (including precipitation, downward shortwave ra-
diation, downward longwave radiation, wind speed, near 
surface air temperature, near surface specific humidity, 
and air pressure). The input forcing data stream will mainly 
be provided by output from the “forward-processing” 
(quasi-operational) NASA GEOS-5 global atmospheric 
analysis system (Rienecker et al., 2008) and is based on 
the assimilation of a very large number (greater than 107 
per day) of conventional and satellite-based observations 
of the atmosphere into a global atmospheric model. At 
the time of this writing, the resolution of the “forward-pro-
cessing” GEOS-5 system is 0.25º by 0.3125º in latitude 
and longitude, respectively. By the time the SMAP mission 
ends, the spatial resolution of these outputs is expected 
to be around 0.125º or finer. Furthermore, the forcing data 
are available as hourly averages or snapshots (depending 
on the variable) and will be interpolated to the land model 
time step with existing software.  

Additional important corrections will be applied using 
gauge- and satellite-based estimates of precipitation. The 
specific data source for the observations-based precip-
itation estimates will be determined closer to the launch 
of SMAP based on availability. At the time of this writing, 
global daily gauge-based estimates are provided by the 
NOAA Climate Prediction Center (CPC) at a horizontal 
resolution of 0.5° with a latency of about 2 days (ftp://ftp.
cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_
GLB/). For the SMAP L4_SM algorithm, the observa-
tions-based precipitation estimates will be downscaled 
to the hourly, 9 km scale of the model forcing using the 
disaggregation method described in (Liu et al., 2011; 
Reichle et al., 2011; Reichle, 2012).  

Select forcing inputs will be provided in the L4_SM data 
product as part of the L4_SM research output (section 
IV.A).

C. Land Model Initial Conditions

The Catchment model prognostic variables will be initial-
ized at the start of the assimilation period after forcing the 
model with meteorological data for a multi-year period 
prior to the assimilation, using forcing data extracted from 
the same sources used during the assimilation period. 
Memory of any poor initialization at the start of this “spin-
up” period will be lost by the time the assimilation starts.

D. Data Assimilation Parameters

The key feature of the EnKF is that error estimates of the 
model-generated results are dynamically derived from 
an ensemble of model integrations. Each member of the 
ensemble experiences slightly perturbed instances of the 
observed forcing fields (representing errors in the forcing 
data) and is also subject to randomly generated noise 
that is directly added to the model prognostic variables 
(representing errors in model physics and parameters). 

Time series of cross-correlated perturbation fields are 
generated and applied to a subset of the meteorological 
forcing inputs and Catchment model prognostic variables.  
Collectively, these perturbations maintain an ensemble of 
land surface conditions that represents the uncertainty 
in the soil moisture state. Depending on the variable, 
normally distributed additive perturbations or lognormally 
distributed multiplicative perturbations are applied. The 
ensemble mean for all perturbations is constrained to 
zero for additive perturbations and to one for multiplica-
tive perturbations. Moreover, time series correlations are 
imposed via a first-order auto-regressive model for all 
fields. The perturbation fields are also spatially correlated 
with length scales of a few hundred kilometers.  

For soil moisture, soil temperature, and brightness tem-
perature, the dominant forcing inputs are precipitation, 
radiation, and air temperature, and we perturb only these 
forcing fields. Imperfect model parameters and imperfect 
physical parameterizations contribute to model errors.  
Such errors are represented through direct perturbations 
to model prognostic variables (that is, model parame-
ter values such as porosity, soil hydraulic conductivity, 
vegetation opacity, single scattering albedo, etc., are not 
separately perturbed). The key prognostic variables of the 
Catchment model related to soil moisture and surface soil 
temperature are the surface excess, the root zone ex-
cess, the catchment deficit, and the surface-layer ground 
heat content. Due to nonlinearities in the Catchment 
model, perturbations in the root zone excess typically 
lead to biases between the ensemble mean and the un-
perturbed control integration. We therefore do not perturb 
the root zone excess. 
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Cross-correlations are imposed on perturbations of the 
precipitation, radiation, and air temperature fields. At 
hourly and daily time scales, the meteorological forcing 
fields are ultimately based on output from atmospheric 
modeling and analysis systems and not on direct ob-
servations of surface precipitation and radiation. The 
cross-correlations are therefore motivated by the as-
sumption that the atmospheric forcing fields represent a 
realistic balance between radiation, clouds, and precipi-
tation. Under that assumption, a positive perturbation to 
the downward shortwave radiation tends to be associated 
with negative perturbations to the longwave radiation and 
the precipitation, and vice versa.  

Forcing and model errors are difficult to quantify at the 
global scale. The perturbation parameter values used 
for L4_SM are largely based on experience. They are 
supported by earlier studies where model and forcing 
error parameters were calibrated in twin experiments 
(Reichle et al. 2002b; Reichle and Koster 2003) and by 
successful assimilation of SMMR, AMSR-E, and ASCAT 
satellite observations (Reichle et al. 2007; 2009; Liu et al. 
2011; Draper et al. 2012), suggesting that these values 
are acceptable.  

Observation error parameters for the assimilated SMAP 
brightness temperatures will be based on error estimates 
provided by the corresponding SMAP products. Two 
distinct error sources contribute to the observation error 
standard deviation needed in the assimilation system:  
(i) “instrument” measurement error (with standard devia-
tions expected to be ~1.3 K at 36 km and ~3.6 K at  
9 km for SMAP), and (ii) “representativeness” error, which 
accounts, for example, for the uncertainty associated 
with orbit-to-orbit variations in the effective support of a 
particular grid cell due to variations in the satellite footprint 
patterns. The total observation error standard deviation 
(including the “instrument” and “representativeness”  
errors) will be determined during algorithm calibration.   
We assume that observation errors are uncorrelated in 
time and space.  

Again, the success of the assimilation system depends on 
the accurate specification of the model and observation 
error parameters. The improvements from data assimila-
tion documented in section V suggest that the perturba-
tion parameter values chosen are valid, if not necessarily 
optimal. The values of the perturbation parameters will 
be provided in the form of metadata in the L4_SM data 
product.  

IV. The L4_SM Data Product

A. Data Product Overview

The SMAP L4_SM data product includes the following 
components (or “File Collections”):

(i) Geophysical Data, including surface soil moisture  
(0–5 cm vertical average), subsurface (or “root zone”) soil 
moisture (0–100 cm vertical average), surface meteoro-
logical forcing variables, surface soil temperature, evapo-
rative fraction, net radiation, and land surface fluxes. 

(ii) Analysis Update Data, including observed, forecast, 
and analysis brightness temperatures (that is, innovations 
information), forecast and analysis surface soil moisture, 
root zone soil moisture, surface soil temperature, and land 
surface temperature (that is, analysis increment infor-
mation), and error estimates for observed and forecast 
brightness temperatures and for analysis soil moisture 
and surface soil temperature.

(iii) Land Model Constants Data (time-invariant), including 
land cover, soil hydraulic parameters, and microwave ra-
diative transfer model parameters such as microwave soil 
roughness, vegetation opacity, and vegetation scattering 
albedo. 

B. Spatial and Temporal Resolution, Posting, and  
Coverage

All L4_SM geophysical parameters will be derived at a 
resolution of 9 km and posted on the SMAP Earth-fixed 
grid with 9-km spacing (EASE grid, version 2) for all global 
land areas (excluding inland water and permanent ice). 
Three basic time steps are involved in the generation of 
the L4_SM product: (i) the land model integration time 
step (15 minutes or less), (ii) the EnKF analysis update 
time step, and (iii) the reporting (or output) time step for 
the geophysical fields and analysis update outputs provid-
ed in the L4_SM data product.

The available SMAP observations will be assimilated in  
an EnKF analysis update step at the nearest 3-hourly 
analysis time (0z, 3z, …, and 21z). The reporting time 
step is 3 hours, that is, geophysical data are provided 
as 3-hourly time averages, and analysis update data are 
provided as 3-hourly instantaneous estimates.
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C. Data Product Availability and Latency

After the 3-month In-Orbit Checkout (IOC) period of the 
SMAP observatory, the L4_SM product must be produced 
within 7 days of satellite data acquisition (mean latency 
under normal operating conditions). Based on the avail-
ability of the input daily-average precipitation observations 
(currently available with a latency of about 48 hours), we 
plan to deliver output once daily with a mean latency of 
~3 days. This schedule may be adjusted according to the 
release schedule of the input precipitation observations 
that will be available after launch. Note that the latency of 
the L4_SM product is at least that of the lower-level SMAP 
input products plus processing time.

Delivery of a beta-version L4_SM product must begin 
6 months after IOC, but every effort will be made to pro-
vide the L4_SM product as soon as possible after launch.  
Delivery of the validated L4_SM product will begin after 
the 12-month Calibration/Validation phase. The Calibra-
tion/Validation phase for Level 4 products covers the first 
twelve months after IOC.

D. Error Estimates

The data assimilation system weighs the relative errors of 
the assimilated SMAP brightness temperature observa-
tions and the corresponding land model forecast (section 
II.D). Estimates of the error of the assimilation product are 
dynamically determined as a by-product of this calcula-
tion. How useful these error estimates are depends on the 
accuracy of the input error parameters and needs to be 
determined through validation. Estimates of instantaneous 
error fields will be provided for select variables as part of 
the Analysis Update Data File Collection. Specifically, the 
error estimates are derived from the ensemble standard 
deviation of the analyzed fields. These error estimates will 
vary in space and time.    

V. Test Plan

The L4_SM algorithm has been tested globally, to the 
extent possible, with satellite observations from precursor 
missions, including AMSR-E, ASCAT, and SMOS. Testing 
will continue until the SMAP launch. In each case, the 
outcome of the test is assessed by validating the assimi-
lation estimates against in situ observations from existing 
networks and by ensuring the consistency of internal 
diagnostics, for example by examining the statistics of the 
observation-minus-forecast residuals. Additional develop-
ment and testing has been conducted in the context of 
Observing System Simulation Experiments (OSSEs); e.g., 
Reichle et al. (2008).  

As an example, Figure 58 shows results from the assimi-
lation of ASCAT and AMSR-E soil moisture retrievals over 
3.5 years into the NASA Catchment land surface model, 
using the ensemble-based GEOS-5 land assimilation 
system (Draper et al. 2012). Soil moisture skill from each 
assimilation experiment is assessed against in situ soil 
moisture observations from the United States Department 
of Agriculture SCAN and SNOTEL networks (66 sites) 
and the Murrumbidgee Soil Moisture Monitoring Network 
in Australia (19 sites). Soil moisture skill is measured as 
the anomaly time series correlation coefficient with the 
in situ data (R). Figure 58 shows the estimated R values 
and their 95% confidence intervals for the surface and 
root-zone soil moisture, from the assimilation of ASCAT, 
AMSR-E and both. The results are benchmarked against 
those from an open-loop simulation, and have been 
averaged by land cover type (based on MODIS land cover 
classifications). Across all 85 sites, assimilating ASCAT 
and/or AMSR-E data significantly improved the soil 
moisture skill (at the 5% level). In the root zone, the mean 
skill was increased from 0.45 for the open-loop, to 0.55 
for the assimilation of ASCAT, 0.54 for the assimilation of 
AMSR-E, and 0.56 for the assimilation of both. Assimilat-
ing the ASCAT or AMSR-E data also improved the mean 
R value over each individual land cover type, in most 
cases significantly.

The root zone soil moisture skill of a prototype L4_SM 
data product that is based on brightness temperature 
assimilation is shown in Figure 59. The prototype product 
was derived at 36-km resolution using surface meteoro-
logical forcing data from the MERRA reanalysis, with  
precipitation forcing corrected towards gauge observa-
tions from the CPC (section III.B). Furthermore, H-  
and V-polarization SMOS brightness temperatures at  
6 incidence angles (32.5°, 37.5°, 42.5°, 47.5°, 52.5°,  
and 57.5°) were assimilated.  

Consistent with the formulation of the L4_SM accuracy 
requirement, in Figure 59 skill is measured in terms of 
RMSE (after removal of the long-term mean bias) versus 
in situ measurements. The figure shows that for most 
individual sites the RMSE is below 0.055 m3m–3. The 
area-average RMSE for the 142 sites shown in Figures 58 
and 59 is 0.043 m3m–3 and thus very close to meeting the 
target value of 0.040 m3m–3. Expected enhancements in 
the skill of the L4_SM product after launch stem from the 
higher accuracy and higher resolution brightness tem-
perature observations from SMAP (as opposed to SMOS), 
improvements in the surface meteorological forcing data 
from the more advanced and higher-resolution “for-
ward-processing” GEOS-5 system (as opposed to  
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Figure 58. Mean skill for (a) surface and (b) root zone soil moisture from 
the open loop (ensemble mean model output, no assimilation), and the 
data assimilation (DA) of ASCAT, AMSR-E, and both, averaged by land 
cover class, with 95% confidence intervals. The number of sites in each 

land cover class is given in the axis labels. Skill is measured as the 
anomaly time series correlation coefficient (R; dimensionless) and based 
on all non-frozen days, from January 2007 to May 2010. (Adapted from 
Draper et al. 2012.)
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MERRA), and the planned 9-km resolution of the land 
surface model (as opposed to 36 km). Moreover, the 
Catchment model will benefit from further improvements 
in the model physics and parameters and the calibration 
of the assimilation system will be improved. In summary, 
the results of this section suggest that the SMAP L4_SM 
data product will successfully meet its target accuracy. 
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6. Carbon Cycle Data Products

I. Motivation and Overview

The SMAP mission provides for global mapping and mon-
itoring of landscape freeze/thaw (FT) status and surface 
soil moisture conditions, with model-enhanced estimation 
of terrestrial carbon (CO2) fluxes and underlying environ-
mental controls. Science objectives enabled by these 
observations include linking terrestrial water, energy and 
carbon cycle processes, and reducing uncertainty regard-
ing land-atmosphere CO2 exchange and the purported 
missing carbon sink on land. The SMAP Level 2/3 FT 
product will quantify the predominant frozen or non-frozen 
status of the landscape at approximately 3-km resolution 
and 3-day fidelity. The FT retrievals will be validated to a 
mean spatial classification accuracy of 80%, sufficient 
to quantify frozen season constraints to terrestrial water 
mobility and the potential vegetation growing season over 
northern (≥45˚N) land areas. The Level 4 carbon (L4_C) 
product uses the FT retrievals and model value-added 
surface and root zone soil moisture estimates with other 
ancillary inputs to quantify net ecosystem CO2 exchange 
(NEE), component carbon fluxes and surface (<10 cm 
depth) soil organic carbon (SOC) stocks over all global 
vegetated land areas. The L4_C product also quantifies 
underlying environmental controls on these processes, 
including soil moisture and frozen season constraints to 
productivity and respiration. The L4_C NEE estimates 
will be validated to an RMSE requirement of 30 g C 
m–2 yr–1 or 1.6 g C m–2 day–1, similar to accuracy levels 
determined from in situ tower eddy covariance CO2 flux 
measurements. The L4_C research outputs include soil 
organic carbon (SOC), vegetation productivity, ecosystem 
respiration, and environmental constraint (EC) metrics 
clarifying FT and soil moisture related restrictions to 
estimated carbon fluxes. These products are designed to 
clarify how ecosystems respond to climate anomalies and 
their capacity to reinforce or mitigate global warming.

The FT signal from satellite microwave remote sensing 
defines the predominant frozen or non-frozen status of liq-
uid water in the landscape, including surface vegetation, 
snow, and soil layer elements. The soil moisture param-
eter derived from satellite microwave remote sensing is 
a closely related measure of the relative abundance of 
liquid water in surface soil layers. Together, these param-
eters define major environmental constraints on a variety 
of ecosystem processes relevant to the global carbon 
cycle, including vegetation phenology and productivity, 
soil decomposition, and respiration processes (McDon-
ald et al. 2004, Kimball et al. 2009, Kim et al. 2012). The 
relative importance of FT or soil moisture constraints 
to ecosystem processes shows strong seasonal and 
spatial variability in accordance with surface climate 
and moisture gradients. Stronger FT constraints gener-
ally occur at higher latitudes and elevations where the 
frozen season is a greater proportion of the annual cycle, 
whereas plant-available soil moisture is a major constraint 

to vegetation productivity and land–atmosphere carbon 
exchange under more arid climate conditions.

The SMAP mission provides for global mapping of soil 
moisture and landscape FT state dynamics with en-
hanced L-band (1.2/1.4 GHz) active/passive microwave 
sensitivity to surface soil conditions, and approximate 
2–3-day temporal repeat and 3–9 km spatial resolution 
observations for resolving dynamic temporal changes 
and landscape heterogeneity in these processes. These 
observations enable new capabilities for global estimation 
and monitoring of ecosystem processes relevant to the 
global carbon cycle. Primary SMAP science objectives 
enabled by these observations include linking terrestrial 
water, energy and carbon cycle processes, quantifying 
the net carbon flux in boreal landscapes, and reducing 
uncertainties regarding the purported missing carbon sink 
on land (Entekhabi et al. 2010). The SMAP operational 
land products that address these carbon cycle relevant 
objectives include Level 2/3 FT classification (McDonald 
et al. 2012) and model enhanced Level 4 carbon products 
(Kimball et al. 2012).

II. Freeze/Thaw Classification

A. Science Basis for Baseline Algorithm

The timing of seasonal FT transitions generally define the 
duration of seasonal snow cover, frozen soils, and the 
timing of lake and river ice breakup and flooding in the 
spring (Kimball et al. 2001, 2004a). The annual non-frozen 
period also bounds the vegetation growing season, while 
annual variability in FT timing has a direct impact on net 
primary production and net ecosystem CO2 exchange 
(NEE) with the atmosphere (Vaganov et al. 1999, Goulden 
et al. 1998). The primary science objective of the SMAP 
L3_FT_A product is to provide the most accurate remote 
sensing-based characterization of landscape FT state 
available at global scale supporting characterization of 
the spatial and temporal dynamics of landscape frozen or 
non-frozen condition for regions where cold temperatures 
are limiting for photosynthesis and respiration process-
es and where the timing and variability in landscape FT 
processes have an associated key impact on vegetation 
productivity and the carbon cycle. The L3_FT_A product 
is designed to quantify and clarify understanding of FT 
timing and variability to these processes over a projected 
three- to five-year mission cycle. The L3_FT_A product is 
directly relevant to a range of potential science applica-
tions, including monitoring of terrestrial carbon stocks and 
fluxes, flood prediction, and vegetation growth and stress.  
The L3_FT_A product will also help advance understand-
ing of the effect of climate variability in the northern high 
latitudes.

The L3_FT_A baseline algorithm is designed to classify 
the land surface FT state based on a time series radar 
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backscatter response to the change in dielectric con-
stant of the land surface components associated with 
water transitioning between solid and liquid phases. This 
response generally dominates the seasonal pattern of 
radar backscatter for regions of the global land surface 
undergoing seasonal FT transitions. The timing of the 
springtime FT state transitions corresponding to this radar 
backscatter response coincides with the timing of grow-
ing season initiation in boreal, alpine, and arctic tundra 
regions of the global cryosphere. The SMAP L3_FT_A 
baseline algorithm follows from an extensive heritage 
of previous work, initially involving truck-mounted radar 
scatterometer and radiometer studies over bare soils and 
croplands (Ulaby et al. 1986; Wegmuller 1990), followed 
by aircraft SAR campaigns over boreal landscapes (Way 
et al. 1990), and subsequently from a variety of satel-
lite-based SAR, radiometer, and scatterometer studies 
at regional, continental, and global scales (e.g., Rignot 
and Way 1994; Way et al. 1997; Kimball et al. 2001; 
McDonald et al. 2004; Kim et al. 2011). These investiga-
tions have included regional, pan-boreal, and global scale 
efforts, supporting development of retrieval algorithms, 
assessment of applications of remotely sensed FT state 
for supporting ecologic and hydrological studies, and 
more recently in assembly of a satellite microwave global 
FT Earth System Data Record (FT-ESDR) now in distribu-
tion at the National Snow and Ice Data Center (Kim et al. 
2010). 

B. Baseline Algorithm Implementation

The FT baseline algorithm is based on a seasonal 
threshold approach and requires only time-series radar 
backscatter information. The algorithm examines the time 
series progression of the remote sensing signature relative 
to signatures acquired during seasonal reference frozen 
and thawed states. The seasonal threshold algorithm is 
well-suited for application to data with temporally sparse 
or variable repeat-visit observation intervals and has been 
applied to ERS and JERS synthetic aperture radar (SAR) 
imagery (e.g., Rignot and Way 1994, Way et al. 1997). 

A seasonal scale factor Δ(t) may be defined for an obser-
vation acquired at time t as:

                        Δ(t) = (s(t) - sfr) / (sth – sfr)  

where s(t) is the measurement acquired at time t for 
which a FT classification is sought, and sfr and sth are 
backscatter measurements corresponding to the frozen 
and thawed reference states, respectively. In situations 
where only a single reference state is available, for exam-
ple sfr, Δ(t) may be defined as a difference: 

                               Δ(t) = s(t) - sfr    

A threshold level T is then defined such that: 

                                     Δ(t) > T

                                     Δ(t) ≤ T   

defines the thawed and frozen landscape states, respec-
tively. This series of algorithms is run on a grid cell-by-cell 
basis for unmasked portions of the global and northern 
(≥45˚N) domains. The output from Eq. (39) is a dimen-
sionless binary state variable designating the predominant 
frozen or thawed condition for each unmasked grid cell.  
Whereas Eq. (37) accounts for differences in the dynamic 
range of the remote sensing response to FT transitions 
driven by variations in land cover, Eq. (38) does not scale 
Δ(t) to account for the dynamic range in the seasonal 
response.

The selection of parameter T may be optimized for vari-
ous land cover conditions and sensor configurations. In 
situations where the wintertime microwave signature is 
not dominated by the snow pack volume, for example for 
radar measurements at lower frequencies (e.g., L-band) 
and where shallow dry snow packs are common, sfr < sth 
and Δ(t) > T defines the landscape thawed condition. 

A major component of the SMAP baseline algorithm de-
velopment has involved radar backscatter modeling and 
application of available satellite L-band remote sensing 
data from JERS-1 and ALOS PALSAR over the global 
terrestrial application area to develop maps of sfr, sth, 
and T. These activities have been used for calibration and 
initialization of the FT seasonal threshold algorithms prior 
to launch. These initial parameters will be evaluated and 
refined through post-launch reanalysis of the SMAP data 
stream.

C. Algorithm Flow

The processing sequence for the L3_FT_A product is 
summarized in Figure 60. SMAP mission specifications 
provide for collection of global land surface observations 
of high-resolution (3 km) radar backscatter (L1C_S0_
HiRes) for the AM (descending) orbital nodes. For the PM 
(ascending) orbital nodes, high-resolution backscatter 
(L1C_S0_HiRes) is acquired at 3-km resolution for regions 
north of 45°N latitude. The resulting combined L3_FT_A 
product will use both AM and PM overpass data in com-
bination to delineate predominantly frozen, thawed, tran-
sitional (frozen in the AM overpass and thawed in the PM 
overpass) and inverse transitional (opposite of transitional) 
conditions. The AM overpass landscape state is provided 
at 3-km resolution for the global scale domain and will be 
used with the same seasonal threshold algorithm to de-
lineate landscape FT status in the SMAP L3_SM_A global 
product. The additional PM overpass landscape state is 
provided at 3-km resolution north of 45°N latitude (base-

(37)

(38)

(39)
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line product) for the L3_FT_A product. All renderings are 
posted to a 3-km EASE grid, both in global (L3_SM_A) 
and northern polar (L3_FT_A) projections. An example of 
global FT classification derived from the Special Sensor 
Microwave/Imager (SSM/I) is presented in Figure 61. The 
global domain represented in the figure corresponds to 
those regions of Earth’s land surface where seasonal 
frozen temperatures are a significant constraint to annual 
vegetation productivity (Kim et al. 2011).

The FT classification algorithm will be applied to the radar 
backscatter data granules for unmasked land areas. The 
resulting intermediate FT products (Figure 60) will serve 
two purposes: (1) these data will be assembled into 
global daily composites in production of the L3_FT_A 
product, and (2) the FT product derived from global AM 
L1C_S0_HiRes granules will provide the binary FT state 
flag supporting generation of the SMAP L2 and L3 soil 
moisture products.

Figure 60.  Processing sequence for generation of the L3_FT_A product and the binary FT state flag to be 
used in generation of the SMAP soil moisture products. 
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The FT classification algorithm is applied to the total 
power radar data streams, total power being the sum 
of HH, VV, and HV polarized backscatter. This provides 
the best signal-to-noise characteristic from the SMAP 
radar, thus optimizing product accuracy. The FT algorithm 
may also be employed to produce landscape FT state 
information from SMAP L1C_TB brightness temperature 
observations. Hence in the event of a failure of the SMAP 
radar data stream, FT data products could be produced 
using the L1C_TB data stream, but at a lower (~40 km) 
spatial resolution at the 36-km grid posting of the L1C_TB 
product.

Radar FT data processing will occur over unmasked 
portions of the global land surface domain. In addition, 
the FT retrieval accounts for the transient open water flag 
determined from the 3-km gridded backscatter in the 
L2_SM_A processing. No FT data processing occurs over 
masked areas, while “no-data” flags are used to identify 
masked grid cells representing ocean and inland open 
water bodies (static and transient), permanent ice and 
snow, and urban areas. The FT algorithms do not utilize 
ancillary data during execution and processing; howev-
er, ancillary data are used to initialize the state change 
thresholds that are employed in the baseline algorithm 
change detection scheme. Although not strictly required, 
prior initialization of these thresholds enhances algorithm 
efficiency and accuracy. 

D. Algorithm Options

Two optional temporal change detection algorithms have 
been identified for classification of landscape FT state 
dynamics using SMAP time-series L-band radar data.  
These options include: 1) moving window and 2) tempo-
ral edge detection FT classification algorithms. Although 
information from the optional algorithms may eventually 
prove useful for augmenting the current baseline algo-
rithm, the use of these optional algorithms is currently 
unspecified.

Moving window techniques classify FT transitions based 
on changes in the radiometric signature relative to the 
temporally averaged signature computed over a moving 
window of specified duration. These approaches are 
useful when applied to temporally consistent datasets 
consisting of frequent (e.g., daily) observations, and for 
identifying multiple FT transition events. For a measure-
ment s(t) acquired at time t, the difference d(t) relative to a 
moving window mean may be defined as:

     d(t) = s(t) – sav (t – L ≤ t0 ≤ t – 1)  

where sav is the average measurement (backscatter 
or brightness temperature) acquired over a window of 
duration L extending over the time interval (t – L ≤ t0 ≤ 
t – 1). The difference d(t) may be compared to various 
thresholds, as in Eq. (39), to define the timing of critical FT 

transitions. These approaches have been employed using 
both NSCAT and SeaWinds scatterometer data for a 
variety of regions (Frolking et al. 1999; Kimball et al. 2001; 
2004a,b; Rawlins et al. 2005). Principal distinctions in 
the application of Eq. (4) have been the duration L of the 
moving window and the selection of thresholds applied to 
infer transition events.   

Temporal edge detection techniques classify FT transi-
tions by identifying pronounced step-edges in time series 
remote sensing data that correspond to FT transition 
events. As FT events induce large changes in landscape 
dielectric properties that tend to dominate the season-
al time-series response of the microwave radiometric 
signatures for the terrestrial cryosphere, edge detection 
approaches are suitable for identification of these events 
using time-series microwave remote sensing data. These 
techniques are based on the application of an optimal 
edge detector for determining edge transitions in noisy 
signals (Canny 1986). The timing of a major FT event is 
determined from the convolution applied to a time series 
of backscatter or brightness temperature measurements 
s(t):

                   CNV(t) = ∞∫∞ ƒ’(x) s (t – x) dx   

where ƒ’(x) is the first derivative of a normal (Gaussian) 
distribution. The occurrence of a step-edge transition is 
then given by the time when CNV(t) is at a local max-
imum or minimum. Seasonal transition periods may 
involve multiple FT events. This technique accounts for 
the occurrence of weak edges, or less pronounced FT 
events, as well as larger seasonal events indicated by 
strong edges, and can distinguish the frequencies and 
relative magnitudes of these events. The variance of the 
normal distribution may be selected to identify step edges 
with varying dominance, i.e., selection of a large variance 
identifies more predominant step edges, while narrower 
variances allow identification and discrimination of less 
pronounced events. This approach has been applied to 
daily time series brightness temperatures from the SSM/I 
to map primary springtime thaw events annually across 
the pan-Arctic basin and Alaska (McDonald et al. 2004).

E. Algorithm Performance 

Refinement and testing of the FT baseline algorithm 
involves utilizing available satellite L-band SAR (e.g., 
JERS-1 SAR and ALOS PALSAR) retrievals and radar 
backscatter models to assess the simulated SMAP radar 
backscatter responses over a variety of environment, 
terrain, and land cover conditions in order to assess 
potential confusion factors and error sources. Primary 
sources of error and uncertainty in the FT product stem 
from: (1) radiometric errors due to resolution and sensor 
viewing geometry (azimuth); (2) geometric errors due to 
terrain layover and shadowing (slope/aspect); (3) with-
in-season radar backscatter variability not accounted 

(40)

(41)
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for by the implementation of the constant frozen and 
thawed reference states employed within the baseline 
algorithm, and (4) variations in land cover with respect to 
spatial heterogeneity.  Some additional errors may occur 
in relatively dry landscapes that contain small amounts 
of water such that changes in FT state result in minimal 
change in backscatter. Also, large precipitation events that 
significantly wet the land surface such that the additional 
surface water induces a pronounced backscatter change 
may induce an error in the classified FT state. Integrating 
JERS-1 and PALSAR datasets within the SMAP SDS test 
bed supports investigation of system level parameters 
(e.g., system noise, viewing geometry, and associated 
topographic effects) in the resulting FT classification error 
and uncertainty assessment.

The FT classification accuracy was simulated using the 
expected SMAP system noise vs. the difference in radar 
backscatter between predominantly thawed and frozen 
landscape states (Figure 62). A step size of at least 1.5 dB 
meets the targeted mean spatial classification accuracy of 
80%, calculated on an annual basis.

The FT algorithm performance will be assessed using 
the SMAP SDS algorithm test bed and available L-band 
microwave remote sensing datasets within the SMAP FT 
classification domain, including satellite based L-band 
observations from PALSAR and SMOS, and relatively fine 
scale remote sensing and biophysical data from in situ 
towers and airborne field campaigns (e.g. PALS, CARVE) 
(Jackson et al. 2011). The FT classification results will be 
evaluated across regional gradients in climate, land cover, 
terrain, and vegetation biomass through direct compari-
sons to existing surface biophysical measurement network 
observations including air/soil/vegetation temperature, 
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Figure 62. Simulation of classification accuracy versus radar noise and 
FT state step size in backscatter. The required accuracy or skill is 80%. 

snow depth and snow water equivalent, and tower eddy 
covariance CO2 exchange. The relationship between the 
algorithm FT state and the in situ sampling data will be 
established. Major focus areas include relations between 
the local/solar timing of satellite AM and PM overpasses 
and diurnal variability in local surface temperature and FT 
state dynamics, the spatial and temporal distribution and 
stability of L-band radar backscatter under frozen and 
non-frozen conditions, and the effects of sub-grid scale 
land cover and terrain heterogeneity on the aggregate FT 
signal within the sensor footprint. Biophysical measure-
ments from in situ station measurement networks will be 
used to drive physical models within the SMAP algorithm 
test bed for spatial and temporal extrapolation of land 
surface dielectric and radar backscatter properties and 
associated landscape FT dynamics. These results will be 
compared with field campaign measurements and satel-
lite based retrievals of these properties. Model sensitivity 
studies will be conducted to assess FT algorithm and 
classification uncertainties in response to uncertainties in 
sensor sigma-0 error and terrain and land cover hetero-
geneity within the sensor field of view.

III. Net Ecosystem Carbon Exchange

A. Science Basis for the Baseline Algorithm

Net ecosystem exchange (NEE) of CO2 with the atmo-
sphere is a fundamental measure of the balance between 
carbon uptake by vegetation gross primary production 
(GPP) and carbon losses through autotrophic (Ra) and 
heterotrophic (Rh) respiration. The sum of Ra and Rh 
defines the ecosystem respiration rate (Reco), which 
encompasses most of the annual terrestrial CO2 efflux to 
the atmosphere and typically represents 70-80 percent 
of the total magnitude of carbon uptake by GPP [Bal-
docchi 2008]. The NEE term provides a measure of the 
terrestrial biosphere capacity as a net source or sink for 
atmospheric CO2 and its ability to offset or reinforce an-
thropogenic greenhouse gas emissions purported to be a 
major driver of global warming (IPCC 2007). NEE and its 
component GPP and respiration rates are spatially het-
erogeneous, temporally dynamic, and strongly influenced 
by changing environmental conditions encapsulated by 
the SMAP FT and soil moisture observations.

Primary science objectives of the L4_C product are to:  
1) determine NEE regional patterns and temporal be-
havior to within the accuracy range of in situ tower eddy 
covariance measurement based estimates of these pro-
cesses, and 2) link NEE estimates with component car-
bon fluxes (GPP and Reco) and the primary environmental 
constraints to ecosystem productivity and respiration.  
The L4_C product objectives follow from the larger SMAP 
mission science objectives to improve understanding of 
processes linking terrestrial water, energy and carbon 
cycles, quantify the net carbon flux in boreal landscapes, 
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and clarify terrestrial carbon sink activity (NRC 2007: 
Entekhabi et al. 2010). The L4_C product is designed 
to quantify and improve understanding of NEE variability 
over a global domain, and the underlying environmental 
constraints to these processes over a projected three- to 
five-year mission cycle. The L4_C product is directly rele-
vant to a range of potential science applications, including 
monitoring of terrestrial carbon stocks and fluxes, and 
NEE source-sink activity for atmospheric CO2. The L4_C 
product will also advance understanding of the way in 
which global ecosystems, including northern boreal Arctic 
biomes, respond to climate variability and their capacity to 
reinforce or mitigate global warming.

The baseline L4_C algorithms utilize SMAP derived FT 
and soil moisture information to define surface water 
mobility constraints to NEE and underlying vegetation 
productivity, soil decomposition, and respiration process-
es. The L4_C model combines satellite data-driven light 
use efficiency (LUE) and three-pool soil decomposition 
algorithms within a terrestrial carbon flux (TCF) model 
framework for estimating daily carbon fluxes and surface 
soil organic carbon (SOC) stocks (Kimball et al. 2012; 
Yi et al. 2013). The L4_C model incorporates extensive 
heritage from the NASA EOS MODIS MOD17 operational 
GPP product (Zhao and Running 2010) and CASA land 
model (Potter et al. 1993), while the SMAP derived FT and 
soil moisture information is used to define frozen tempera-
ture and plant-available moisture constraints to estimat-
ed productivity and soil decomposition processes. The 
SMAP information is combined with other ancillary inputs, 
including satellite (MODIS) derived canopy fraction of 
photosynthetically active radiation (FPAR) and land cover 
information, and daily surface meteorology from obser-
vation-constrained global model reanalysis. The product 
domain encompasses all global vegetated land areas, 
while model calculations are conducted at a daily time 
step. The SMAP L4_SM and L3_SM_A products are used 
as primary environmental inputs to the L4_C algorithms, 
providing a direct link between SMAP product retrievals 
and net ecosystem CO2 exchange, and underlying veg-
etation productivity, soil decomposition, and respiration 
processes.

B. Baseline Algorithm Implementation

The L4_C algorithms utilize a TCF model to integrate 
SMAP mission derived FT and soil moisture inputs with 
ancillary MODIS FPAR and other biophysical data to 
estimate NEE and its component carbon fluxes (GPP and 
Reco), surface (<10 cm depth) SOC stocks, and associat-
ed environmental constraints to these processes (Kimball 
et al. 2012). The NEE parameter is the primary (validated) 
product field used for demonstrating L4_C accuracy and 
success in meeting product science requirements (Jack-
son et al. 2012), though the other L4_C product fields 
also have strong carbon cycle science utility. The targeted 

accuracy of the L4_C NEE estimate is ≤ 30 g C m–2 yr–1 
or 1.6 g C m–2 d–1 (RMSE), similar to the level of accura-
cy attained from in situ tower eddy covariance CO2 flux 
measurement based NEE observations (Baldocchi 2008; 
Richardson and Holliger 2005; Richardson et al. 2008).

NEE (g C m–2 d–1) is computed on a daily basis as the 
residual difference between GPP and respiration from 
autotrophic (Ra) and heterotrophic (Rh) components:

                       NEE = (Ra + Rh) - GPP    

where positive (+) and negative (-) NEE fluxes denote the 
respective terrestrial loss or uptake of CO2. The GPP term 
(g C m–2 d–1) represents the mean vegetation gross prima-
ry production of the dominant plant functional type (PFT) 
within a grid cell and is derived on a daily basis using a 
LUE algorithm:

                            GPP = ε * APAR    

where ε is the conversion efficiency (g C MJ-1) of photo-
synthetically active radiation (PAR) to vegetation biomass, 
and APAR (MJ m–2 d–1) is the amount of PAR absorbed 
by the canopy and available for photosynthesis. PAR (MJ 
m–2 d–1) is estimated as a constant proportion (0.45) of 
incident shortwave solar radiation at the surface (Rsw, MJ 
m–2 d–1) and is used with the estimated fraction of incident 
PAR absorbed by the vegetation canopy (FPAR) to deter-
mine APAR:

                        APAR = PAR * FPAR    

The PAR conversion efficiency (ε) term is derived on a 
daily basis from an estimated maximum rate (εmx, g C 
MJ–1) prescribed for different plant functional types (PFT 
classes) (Zhao et al. 2005), and is reduced for suboptimal 
environmental conditions defined as the product (εmult) of 
dimensionless rate scalars ranging from no effect (1)  
to complete rate reduction (0) for daily minimum air  
temperature (Tmn_scalar), atmosphere vapor pressure  
deficit (VPDscalar), landscape FT status (FTscalar), and inte-
grated (0–1 m depth) surface to root zone soil moisture  
(SMrz_scalar) conditions:

        mult = Tmn_scalar * VPDscalar * FTscalar * SMrz_scalar   
   
                                 =  mx *  mult    

The above attenuation scalars are defined as simple 
switch and linear ramp functions (Kimball et al. 2012), and 
deviate from the MOD17 LUE logic (Zhao et al. 2005) by 
specifying environmental constraints for frozen landscape 
conditions and suboptimal root zone soil moisture (SMrz) 
levels. The attenuation functions vary according to pre-
scribed minimum and maximum constraints determined 
for different global biome types (Kimball et al. 2012). The 
primary model environmental response characteristics are 
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determined using control parameters defined for individual 
land cover PFT classes within a general Biome Properties 
Look-Up Table (BPLUT). A detailed set of global BPLUT 
parameters is summarized in the L4_C Algorithm Theoret-
ical Basis Document (ATBD) (Kimball et al. 2012). These 
parameters were assembled from MODIS operational 
(MOD17) GPP product definitions (Zhao et al. 2005) and 
detailed L4_C model calibration and validation studies 
using in situ CO2 fluxes and environmental measurements 
from global tower eddy covariance network (FLUXNET) 
monitoring sites (Kimball et al. 2009, 2012; Yi et al. 2013).

The FTscalar term represents the frozen temperature 
constraint to landscape water mobility and GPP as 
determined from regional comparisons between tower 
based GPP observations and daily FT retrievals from 
satellite microwave remote sensing (Kimball et al. 2004; 
Kim et al. 2012). The SMrz_scalar term provides a direct low 
soil moisture constraint to GPP in addition to the atmo-
sphere moisture deficit (VPD) constraint. These additional 
terms provide for a direct link between SMAP FT and soil 
moisture products, and associated environmental con-
straints to vegetation productivity and terrestrial carbon 
flux calculations.

The autotrophic respiration (Ra) term (42) represents the 
sum of vegetation growth and maintenance respiration, 
and is computed on a daily basis as a fixed proportion 
of GPP within individual PFT classes, based on observa-
tional evidence that variability in the ratio of Ra to GPP is 
conservative within individual biomes (Litton et al. 2007, 
Gifford 2003).

Heterotrophic respiration is computed as the sum of 
variable decomposition and respiration rates from three 
distinct SOC pools as:

Rh = (Kmet * Cmet + [1–Fstr] * Kstr * Cstr + Krec * Crec) 

where Cmet, Cstr and Crec (g C m–2) represent metabolic, 
structural, and recalcitrant SOC pools, and Kmet, Kstr 
and Krec (d–1) are the corresponding decomposition rate 
parameters. The metabolic and structural SOC pools 
represent plant litter with relatively short (e.g., ≤ 5 years) 
turnover periods, while the recalcitrant pool represents 
more physically and chemically protected SOC with a 
longer turnover time.

The three-pool soil decomposition model approximates 
the complex variation of intrinsic SOC turnover rates, but 
has been found to produce results consistent with a wide 
range of observations (Knorr and Kattge 2005).  Litter 
inputs to the Cmet and Cstr pools (47) are derived as pro-
portions of estimated vegetation net primary production 
(NPP), while input to the Crec pool is defined as a constant 
proportion (Fstr) of decomposed detritus from the Cstr 

pool (Ise and Moorcroft 2006); outputs to the SOC pools 
represent daily sums of the respired components:

                   dCmet /dt = Cfract * NPP – Rh,met   
    
                 dCstr /dt = (1 - Cfract) * NPP– Rh,str    
    
                     dCrec /dt = Fstr * Rh,str – Rh,rec   

where NPP is estimated as a fixed proportion of GPP 
(g C m–2 d–1) within individual PFT classes (Kimball et al. 
2012; Gifford 2003; Litton et al. 2007). The Cfract term 
defines the rate in which litterfall from NPP is allocated to 
metabolic and structural SOC pools, and is specified as a 
fixed rate within individual land cover classes (Potter et al. 
1993; Ise and Moorcroft 2006). Values for Cfract and pro-
portional allocations of GPP to Ra and NPP are defined in 
the BPLUT for individual PFT classes (Kimball et al. 2012).  
This approach assumes that litter inputs to the SOC pool 
are proportional to NPP under long-term steady state 
conditions (Ise and Moorcroft 2006).

A dynamic litterfall scheme is employed for daily carbon 
allocation of annual NPP to the metabolic and structural 
SOC pools (Cmet and Cstr), where the NPP litterfall fraction 
is evenly distributed over each annual cycle. This ap-
proach ignores potential large seasonal litterfall variability, 
but avoids the use of more complex phenology models 
that may contribute additional model complexity and 
uncertainty.

The L4_C algorithms employ dimensionless rate curves 
to account for soil temperature and moisture constraints 
to soil decomposition. The soil decomposition rate (K) is 
derived as the product of dimensionless multipliers for 
soil temperature (Tmult) and moisture (Wmult) and a theoret-
ical optimum or maximum rate constant (Kmx; d–1) under 
prevailing climate conditions:

                       Kmet = Kmx * Tmult * Wmult  

where Tmult and Wmult vary between 0 (fully constrained) 
and 1 (no constraint). The value for Kmx is specified as 
a constant within individual PFT classes, while decom-
position rate parameters for Kstr and Krec are estimated 
as 40% and 1% of Kmet, respectively (Ise and Moorcroft 
2006).  The estimation of K assumes constant soil de-
composer efficiency (microbial CO2 production to carbon 
assimilation ratio) inherent in the Kmx term, and that soil 
moisture and temperature are the dominant controls on 
near-term (daily, seasonal, annual) decomposition rates. 
However, this approach also assumes that changes in lit-
ter quality (e.g., physical protection and/or chemical resis-
tance to microbial decomposition) influence Rh and NEE 
indirectly through associated changes in ancillary satellite 
(MODIS) derived FPAR inputs, especially over generally 
nitrogen (N) limited boreal and tundra ecosystems.

(47)

(48)

(49)

(50)

(51)
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The soil decomposition rate response to temperature is 
defined using an Arrhenius type function [Lloyd and Taylor 
1994]:

Tmult = exp [308.56 * ((46.02 + Topt)–1 – (Ts + 46.02)–1)] 

where Topt and Ts are the respective reference and input 
daily surface soil temperatures (°C) for Ts ≤ Topt. The Topt 
term defines the optimum temperature for soil decompo-
sition and is prescribed as a PFT-specific constant in the 
BPLUT. The above relationship defines a low-temperature 
constraint to soil decomposition; Tmult is assumed to be 
unity and soil decomposition no longer temperature limit-
ed for soil temperatures above Topt. Under these condi-
tions, soil moisture is expected to decline with warmer soil 
temperatures and Wmult becomes the primary constraint 
to Kmet. This assumption is generally valid for most global 
biome types, including temperate, boreal and Arctic eco-
systems (Kimball et al. 2009; Yi et al. 2013), but may not 
hold for warm and humid climate zones including tropical 
biomes (Jones et al. 2003). A variety of functional types 
have been used to describe temperature effects on soil 
respiration, while the Arrhenius model is physically based 
and provides a relatively accurate, unbiased estimate of 
soil respiration across a wide range of conditions (Lloyd 
and Taylor 1994; Knorr et al. 2005; Yvon-Durocher et al. 
2012).

The soil decomposition rate response to soil moisture 
(SM) variability is defined for unsaturated (SM ≤ SMopt) 
conditions as:

Wmult = [1 + a * EXP(b * SMopt)] / [1 + a * EXP(b * SM)] 

where SM is expressed as a proportion (%/100) of soil 
saturation; SMopt is the optimum soil moisture level for 
heterotrophic decomposition and is prescribed for differ-
ent PFT classes. The a and b terms are empirical fitting 
parameters (dimensionless) that define the decomposition 
rate response to soil moisture variability and are specified 
for different PFT classes in the BPLUT. The Wmult term is 
assumed to be unity (no restriction) for SM>SMopt, which 
accounts for ecosystem adaptations to wet soil conditions 
and a general lack of landscape level observational evi-
dence for extended SM saturation and associated reduc-
tions in aerobic decomposition (Chimner 2004; Elberling 
et al. 2011). The above algorithm also assumes that mean 
surface soil properties are similar within individual land 
cover classes and relatively coarse (~9-km resolution) 
global satellite footprints and modeling grids.

The L4_C daily product format includes individual granules 
(output variables) for each grid cell representing GPP, Rh 
and NEE fluxes (g C m–2 d–1), surface SOC (kg C m–2), 
dimensionless (0-1) environmental constraint (EC) indices 
affecting the productivity and respiration calculations, and 
a dimensionless data quality assessment (QA) identifier for 
the NEE calculation. A L4_C product example for NEE is 

shown in Figure 63. The L4_C daily outputs are posted to 
a 9-km resolution global Earth grid having 1624 rows and 
3856 columns, and global EASE2 grid projection format 
consistent with the SMAP L4_SM inputs. The L4_C global 
processing is conducted at a finer 1-km spatial resolution 
consistent with the ancillary MODIS FPAR (MOD15) and 
land cover classification (MOD12Q1) (Friedl et al. 2010) 
inputs used to define vegetation canopy attributes and 
BPLUT response characteristics for the model calcula-
tions. The model output parameter spatial means and 
variability (SD) within each 9-km resolution grid cell are 
defined from the underlying 1-km resolution L4_C cal-
culations, while regional means from up to 8 global PFT 
classes are also represented within each cell. The (8)  
PFT classes and BPLUT parameters associated with 
these classes are enumerated elsewhere (Kimball et al. 
2012). The EC granule includes four separate fields for 
each grid cell describing: 1) the estimated mean bulk  
PAR conversion efficiency constraint (εmult) to the LUE 
based GPP calculations; 2) mean soil moisture (Wmult), 
and 3) temperature (Tmult) constraints to the Rh calcula-
tions; and 4) the proportional frozen area within each  
9-km grid cell defined from the finer (3-km) resolution 
SMAP FT (L3_SM_A) inputs. The EC indices for εmult, 
Wmult, and Tmult are derived from the same dimensionless 
multipliers used to derive GPP and Rh, but are rescaled 
in the product table to range from 0 (fully constrained) to 
100 (no constraint) percent.

C. Algorithm Flow

The baseline L4_C model structure is summarized in 
Figure 64 for respective LUE and carbon flux model 
components. The algorithm approach has structural 
elements similar to the Century (Parton et al. 1987; Ise 
and Moorcroft 2006) and CASA (Potter et al. 1993) soil 
decomposition models and operational MODIS MOD17 
GPP algorithm (Zhao et al. 2005; Zhao and Running 
2010), and is adapted for use with daily biophysical inputs 
derived from both global satellite and model reanalysis 
data (Kimball et al. 2009; Yi et al. 2012).

The L4_C model outputs are produced at a daily time 
step and over a global domain encompassing all vege-
tated land areas (Figure 63) represented by ancillary land 
cover classification and FPAR (MODIS) inputs. Ancillary 
FPAR inputs from the MODIS (MOD/MYD15) operational 
product stream are obtained with approximate 8-day 
temporal fidelity and native global sinusoidal grid tile 
format, and reprojected to the 1-km resolution global 
EASE2 grid projection format as a L4_C preprocessing 
step. Only best quality (QC) FPAR data are used as L4_C 
inputs, while missing or lower QC data for each grid cell 
are replaced with alternative FPAR inputs from an ancillary 
global mean 8-day FPAR climatology defined from the 
long-term (2000–2010) MODIS MOD15 best QC data re-
cord. Other dynamic daily ancillary inputs include coarser 

(52)

(53)
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3-km resolution FT (L3_SM_A), 9-km resolution surface 
and root zone soil moisture (L4_SM), and GMAO (FP) 
surface meteorology. These data provide primary environ-
mental forcings for the carbon model calculations and are 
subsampled to the nested 1-km resolution grid cells used 
for L4_C processing. The carbon model outputs are then 
spatially aggregated to the final 9-km resolution global 
EASE2 grid and HDF5 product format as a post-pro-
cessing step. The L4_C product has a target mean data 
latency of approximately 14 days. The product latency is 
primarily determined by latency and availability of ancillary 
MODIS FPAR (~12-day latency) inputs, and accounting for 
an additional 2-day data processing period.
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D. Algorithm Options

Two primary algorithm options are considered that affect 
the L4_C design relative to the product baseline. These 
options include: 1) use of lower order satellite optical-IR 
remote sensing based spectral vegetation index (VI) inputs 
to estimate FPAR for the LUE model based GPP calcula-
tions; 2) use of ancillary vegetation disturbance (fire) and 
recovery status inputs to perturb model SOC and carbon 
flux calculations from dynamic steady-state conditions.

Option 1) allows for empirical estimation of FPAR using 
more readily available VI inputs if an operational FPAR 
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Figure 64. Upper graphic:  Baseline L4_C LUE model structure for 
estimating GPP.  Arrows denote the primary pathways of data flow, while 
boxes denote the major process calculations. Primary inputs include 
daily root zone soil moisture (SMrz) and landscape freeze/thaw (FT) 
status from SMAP L4_SM and L3_SM_A products (in red), and other dy-
namic ancillary inputs (in green) including FPAR (MODIS) and land model 
(GMAO) data assimilation based daily surface meteorology, including 
vapor pressure deficit (VPD), minimum air temperature (Tmn) and incident 
solar shortwave radiation (Rsw). Model calculations are performed at 

1-km spatial resolution using dominant PFT and BPLUT response charac-
teristics for each grid cell defined from a global land cover classification. 
The resulting GPP calculation is a primary input to the carbon flux model 
(lower graphic). Primary carbon flux model inputs (in red) include daily 
GPP from the LUE model, and surface soil moisture (SM) and temperature 
(Ts) from the SMAP L4_SM product. NEE is the primary (validated) output, 
while GPP, Rh, SOC and EC constraint metrics are secondary (research) 
outputs.
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product stream becomes unavailable during the SMAP 
mission period. The use of alternative VI inputs from 
other operational satellite sensors (e.g., VIIRS) poten-
tially enhances the availability and reliability of algorithm 
inputs, but may degrade product accuracy and latency.  
However, regional and global testing of the L4_C model 
using alternative FPAR inputs derived from PFT specific 
empirical relationships between best QC MODIS 16-day 
composited NDVI (MOD13A2) and the FPAR (MOD15) 
8-day climatology (2000–2010) showed similar accura-
cy as the L4_C product baseline for GPP (Kimball et al. 
2012; Yi et al. 2013).

Option 2) enhances the scientific merit and potential L4_C 
product accuracy relative to the baseline by representing 
nonsteady state vegetation disturbance and recovery 
impacts on GPP, NEE, and SOC stocks. For the product 
baseline, vegetation disturbance is only partially repre-
sented by associated impacts to ancillary FPAR (MODIS) 
inputs. Vegetation disturbance from wildfire and other 
agents has a major impact on vegetation composition and 
function, and associated growth and respiration process-
es (Amiro et al. 2010; Coursolle et al. 2012), which can 
alter the balance between carbon sequestration and SOC 
storage, and NEE source/sink activity (Balshi et al. 2007; 
Bond-Lamberty et al. 2007). A nonsteady state distur-
bance recovery option for the L4_C algorithm was de-
veloped and tested over the northern (≥45°N) domain (Yi 
et al. 2013). Regional disturbance and recovery patterns 
were defined using an ancillary satellite ensemble global 
fire emissions database (Giglio et al. 2010), and empirical 
models of SOC and GPP recovery derived from MODIS 
VI (EVI, NDVI) inputs and boreal fire chronosequence 
tower site network observations of terrestrial carbon flux 
recovery. The disturbance recovery option resulted in im-
proved L4_C based estimates of GPP and NEE in relation 
to the tower chronosequence observations. Drought and 
temperature variations had larger regional impacts on the 
carbon fluxes than fire disturbance recovery, though fire 
disturbances were heterogeneous, with larger impacts 
on carbon fluxes for some areas and years. The model 
performance for both baseline and estimated non steady-
state conditions was generally within the targeted L4_C 
accuracy requirements for NEE in relation to regional tow-
er observations. The dynamic disturbance and recovery 
option adds potential science utility by providing a more 
realistic representation of nonsteady state conditions 
represented by most ecosystems. However, this option in-
creases ancillary input requirements and model complexi-
ty, while the tower chronosequence observations needed 
for model development and parameterization are generally 
lacking over the global domain.

E. Algorithm Performance

The L4_C algorithm performance, including variance and 
uncertainty estimates of model outputs, was determined 

during the mission pre-launch phase through model sen-
sitivity studies using ancillary inputs similar to those used 
for mission operations and evaluating the resulting model 
simulations over the observed range of northern (≥45°N) 
and global conditions. Model inputs used for these studies 
were similar to the L4_C operational inputs and included 
GMAO MERRA based daily surface meteorology and soil 
moisture inputs (Yi et al. 2011), satellite passive microwave 
remote sensing based soil moisture (Kimball et al. 2009) 
and freeze/thaw records (Kim et al. 2012), and MODIS 
VI, FPAR, and GPP records (Kimball et al. 2012; Yi et al. 
2013).

An estimated error budget for the L4_C NEE product is 
summarized in Table 15. This table quantifies the expect-
ed primary error sources and individual and cumulative 
error contributions to the L4_C based NEE estimates. 
The error budget indicates baseline L4_C product per-
formance within the targeted accuracy guidelines (i.e., 
NEE RMSE ≤ 30g C m–2 yr–1 and 1.6 g C m–2 d–1). Land 
cover heterogeneity contributes more than half (57%) of 
the total product NEE uncertainty variance, while GPP, 
soil moisture, and temperature inputs together contribute 
31% of total error variance, and the remaining 12% of 
the expected total error variance attributable to model 
parameterization uncertainty. Errors contributed by model 
parameterization are the least certain component of the 
error analysis because it is difficult to precisely quantify 
global parameter variability and model structural inaccura-
cy. The error budget is defined relative to northern biomes, 
which are the primary focus of L4_C science requirements 
and traceability. The relative (%) contributions of individual 
error components vary for other biomes and for variable 
weather and climate conditions. The error contribution 
of input soil moisture and temperature uncertainty is also 
expected to be larger for warmer and drier grasslands 
relative to boreal biomes.

A spatial implementation of the L4_C error (RMSE) budget 
over all global vegetated land areas was conducted using 
a forward model sensitivity analysis driven by available 
ancillary satellite (MODIS) and global model reanalysis 
(MERRA) inputs (Figure 65). These simulations included 
both random and systematic error components from mod-
el inputs and land cover heterogeneity effects at the 9-km 
spatial resolution of the global product. The resulting glob-
al NEE error budget is consistent with the previous error 
budget (Table 15); the global simulations indicate that the 
L4_C accuracy requirements are satisfied over more than 
82 and 89% of respective global and northern (≥45°N) 
vegetated land areas, and congruent with independent 
NEE estimates derived from in situ tower (FLUXNET) eddy 
covariance network CO2 flux measurements (Baldocchi 
2008). Error contributions from the GPP calculations and 
soil moisture and temperature inputs vary with regional 
gradients in estimated vegetation biomass productivity. 
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Figure 65. (a) Forward model simulations of L4_C NEE annual error 
(RMSE) derived using MODIS and MERRA reanalysis inputs; nonvegetat-
ed areas (in white) were masked from the analysis. Filled symbols de-
note selected tower (FLUXNET) validation sites for: Evergreen Needleleaf 
Forest (ENF), Deciduous Broadleaf Forest (DBF), Mixed Forest (MXF) & 
Grassland (GRS). (b) Estimated NEE error for the 124 tower sites grouped 
by PFT class; closed squares denote mean RMSE [        ] and correlation 
[        ] between tower observations and coincident L4_C simulations; 

Open squares [        ] denote RMSE for each global PFT class, including 
random and systematic errors; Blue squares [    ] denote global RMSE 
from random error only. Error bars denote two standard deviations. The 
number (N) of tower sites in each PFT class and mean correlations (R) 
between L4_C and tower NEE are also shown. These results indicate that 
the L4_C accuracy requirements (i.e., NEE RMSE ≤ 30 g C m–2 yr–1) are 
met over more than 82% and 89% of global and northern vegetated land 
areas, respectively.

The estimated L4_C NEE uncertainty increases in higher 
biomass productivity areas (e.g., forests) due to assump-
tions of increasing uncertainty in satellite microwave soil 
moisture retrievals and associated model data assimilation 
based soil moisture inputs. The estimated NEE uncertain-
ty is lower than might be expected in some warmer trop-
ical high biomass productivity areas (e.g., Amazon rain-
forest) because of reduced low temperature and moisture 

constraints to the L4_C respiration calculations so that 
the bulk of model uncertainty is contributed by GPP in 
these areas. Model NEE uncertainty in the African Congo 
is larger than Amazonia due to relatively drier climate con-
ditions in central Africa defined from the GMAO MERRA 
surface meteorology inputs and associated uncertainty 
contributions from both respiration and GPP.  These initial 
estimates will be refined during SMAP operations.

Type of Error

Table 15.  Estimated Total Annual NEE Error (RMSE) Budget for the SMAP L4_C Product 

Input Data

Model  
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A detailed summary of L4_C calibration and validation ac-
tivities is provided elsewhere (Kimball et al. 2012; Jackson 
et al. 2012) and also summarized in Chapter 7 (Calibration 
and Validation Plan). The statistical methods and domains 
of validity used for testing the L4_C algorithms and for 
demonstrating that their performance meets the SMAP 
science requirements primarily involve direct comparisons 
between L4_C outputs and tower eddy covariance CO2 
flux measurements from globally distributed FLUXNET 
monitoring sites [Baldocchi 2008]. Approximately 80 (from 
>400) FLUXNET sites meet L4_C validation criteria for 
having spatially homogeneous land cover characteristics 
consistent with the overlying global PFT classification 
used for the L4_C carbon model calculations, and multi-
year data records with well characterized uncertainty.

Initial investigations of L4_C product accuracy indicate 
that model performance is within the targeted accura-
cy requirements and at the level of tower observation 
uncertainty (Figure 65) (Kimball et al. 2012). A regional test 
of the L4_C algorithms over a northern domain showed 
favorable results for GPP (n=47 sites, R≥0.7, RMSD 
<2.5 g C m–2 d–1), and overall consistency for NEE (n=22, 
R>0.5, RMSD<2.5 g C m–2 d–1) in relation to daily carbon 
fluxes from regional tower sites (Yi et al. 2013); the model 
simulations of surface SOC stocks were also similar to 
independent SOC maps derived from regional soil inven-
tory records. A pan-Arctic regional model intercomparison 
study also indicated that the L4_C model performance is 
similar to more detailed ecosystem process model sim-
ulations of terrestrial carbon fluxes (McGuire et al. 2012).  
Similar L4_C product validation efforts will occur during 
the SMAP post-launch period and will be used to clarify 
and refine model performance and product accuracy.

F. Product Constraints, Limitations and  
Assumptions

The L4_C algorithms incorporate several simplifying 
assumptions consistent with a global satellite remote 
sensing product and may not sufficiently characterize all 
the major processes regulating land-atmosphere CO2 ex-
change. For example, soil decomposition studies indicate 
that the carbon assimilation efficiency of soil microbes and 
associated SOC decomposition rates vary with changes 
in soil nitrogen availability and may not be adequately rep-
resented by a biome-specific optimum soil decomposition 
rate (Kmx). Soil heterotrophic respiration from deeper (e.g., 
>20 cm depth) soil layers can increase with soil warm-
ing, with a significant respiration contribution from older 
(centuries before present) SOC sources. These process-
es may not be adequately represented by regional GPP 
estimates, recent climate conditions, and near surface FT 
and SM dynamics from relatively coarse satellite remote 
sensing and model assimilation data.

The L4_C algorithms assume that the bulk of soil decom-
position and Rh is derived from recent litterfall and surface 
(<10 cm depth) soil layers. This assumption general-
ly holds for most ecosystems, including boreal-arctic 
biomes, because the bulk of annual litter decomposition 
is composed of relatively recent (i.e., <5 years old) leaf 
litter that is more labile than older soil litter layers. Howev-
er, deeper soil layers can contribute up to 40% or more 
of total Rh, especially later in the growing season as the 
seasonal warming of deeper layers progresses and lags 
behind shallower soil layers. The contribution of deeper 
SOC layers to Rh may also increase over longer (decadal) 
time periods in boreal-arctic regions due to the large 
reservoir of soil carbon stored in permafrost soils, and 
potential warming and destabilization permafrost under 
global warming (Schuur et al. 2009). While the L4_C 
baseline algorithms are considered adequate to capture 
NEE seasonal and interannual variations over a 3–5 year 
mission life, the algorithm structure would require addi-
tional complexity to represent the Rh contributions from 
permafrost degradation and deeper soil layers over longer 
time periods. 

The L4_C baseline algorithms assume that surface SOC 
stocks are in dynamic equilibrium with estimated vegeta-
tion productivity; this steady-state assumption produces 
a carbon neutral biosphere (cumulative NEE = 0) over 
the long-term record, but represents NEE seasonal and 
interannual variability in response to weather and near-
term climate variability (Yi et al. 2013). However, terrestrial 
carbon source-sink activity at most locations is impacted 
by disturbance history, which perturbs above and below 
ground carbon stocks away from steady-state conditions 
(Baldocchi 2008). Disturbance and recovery effects on 
L4_C carbon flux calculations are partially accounted 
for through associated impacts to ancillary FPAR or VI 
(option) inputs to the L4_C LUE algorithm and GPP cal-
culation. The L4_C disturbance recovery algorithm option 
also provides a more explicit representation of non-steady 
state fire disturbance and recovery impacts to GPP, 
SOC and NEE estimates, and generally improved model 
accuracy (Yi et al. 2013), but at the expense of increased 
ancillary input and model parameterization requirements. 

Land cover and land use change (LCLUC) from direct and 
indirect human impacts have a large impact on NEE over 
the global domain, but are expected to have less impact 
over sparsely populated northern land areas. Satellite re-
mote sensing studies indicate that LCLUC from deforesta-
tion accounts for up to 1–3% yr–1 of forested land area 
in tropical regions (Lepers et al. 2005); these biome level 
changes combined with urban and agricultural conver-
sions have a substantial influence on global NEE patterns 
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and recent trends (IPCC 2007). The MODIS FPAR inputs 
are derived using a static global land cover classification 
that does not explicitly represent LCLUC impacts. Land 
cover changes occurring during the SMAP mission period 
are expected to alter biome (BPLUT) response charac-
teristics of the affected region, which are not adequately 
represented using a static (baseline) ancillary land cover 
classification, leading to greater NEE estimation uncertain-
ty for the affected area.

The inhibiting effects of low soil moisture on soil CO2 
fluxes are represented in the L4_C algorithms, primar-
ily through a non-linear soil heterotrophic response to 
surface soil moisture variability. However, wetlands have 
been associated with reduced CO2 production by aerobic 
decomposition and respiration processes, and enhanced 
methane (CH4) production by anaerobic decomposition.  
Studies supporting Rh reduction under saturated soil con-
ditions are largely based on controlled incubation exper-
iments and extended inundation periods, while evidence 
is less consistent from studies involving natural landscape 
level observations and heterogeneous surface conditions, 
including tower eddy covariance measurement footprints.  
Pre-launch L4_C algorithm sensitivity studies indicated 
decreased NEE accuracy (relative to the baseline) by 
imposing alternative (e.g., convex parabolic) soil moisture 
response functions and greater soil moisture constraints 
under saturated soil conditions relative to global FLUX-
NET tower records (Kimball et al. 2009, 2012). The L4_C 
algorithms therefore assume no soil moisture constraint 
to Rh under saturated conditions and consequently may 
overestimate Rh and underestimate NEE carbon (CO2) 
sink activity under extended inundation periods.

The SMAP retrievals are sensitive to surface soil moisture 
and water inundation, while soil moisture and temperature 
influence both aerobic and anaerobic respiration process-
es; therefore, SMAP data are potentially useful for regional 
mapping and monitoring of both CO2 and CH4 fluxes.  
While CH4 is a significant greenhouse gas and wetlands 
are a major component of northern and global ecosys-
tems, CH4 is beyond the scope of current L4_C algorithm 
and product specifications.

The L4_C baseline algorithms define cold temperature 
constraints to GPP and Rh calculations but apply no 
warm temperature constraint to estimated carbon fluxes 
above a biome (BPLUT) specific optimum temperature 
threshold. Under warmer conditions, low soil moisture is 
assumed to be the primary constraint to Rh, while large 
VPD and low root zone soil moisture levels are expected 
to be major constraints to GPP. These assumptions may 
not hold in warm and relatively moist climate conditions 

(e.g. tropical rainforest), leading to potential overestima-
tion of GPP and Rh, and enhanced soil decomposition 
and underestimation of SOC. The net effect of these 
errors on NEE accuracy is less clear, but may be partially 
mitigated by compensating changes in GPP and respira-
tion components.

Sub-grid scale terrain and land cover heterogeneity is a 
potential source of L4_C algorithm uncertainty, and may 
not be adequately represented by 1-km resolution MODIS 
FPAR and land cover, and 3–9-km resolution FT, SM, and 
surface meteorological inputs used to derive mean daily 
carbon fluxes within each model grid cell. While the  
1 km L4_C processing is similar to the sampling footprint 
of most in situ tower (FLUXNET) observation sites, the 
coarser-scale FT and meteorological inputs are expected 
to impart additional uncertainty to the model calculations, 
particularly over complex terrain and land cover areas and 
during seasonal FT transition periods where differences 
between the overlying grid cell and local environmental 
heterogeneity are expected to be larger. 

The L4_C algorithms use a single set of land cover–spe-
cific (BPLUT) coefficients to estimate spatial and temporal 
variations in NEE and component carbon fluxes over 
a global domain. The BPLUT approach has extensive 
heritage, including the EOS MODIS operational (MOD17) 
GPP product (Zhao and Running 2010). However, use of 
singular coefficients to describe heterogeneous processes 
may lead to model prediction error where the underlying 
population response is skewed or multi-modal and not 
well represented by a single mean response characteris-
tic. Ideally, a Bayesian approach would be better suited 
to represent variability and uncertainty in model response 
characteristics (Kimball et al. 2012). However, these ap-
proaches are computationally prohibitive for an operation-
al global product. The characteristic distributions of many 
of the BPLUT parameters are also uncertain based on the 
current literature and sparse in situ observation networks.

Despite the above limitations, the L4_C baseline product 
is expected to provide NEE estimates commensurate with 
the accuracy attained from in situ tower eddy covariance 
measurement networks (Kimball et al. 2012; Yi et al. 
2013). However, NEE is an incomplete representation 
of CO2 source-sink activity because it does not account 
for anthropogenic carbon emissions or terrestrial carbon 
losses due to fire, harvesting, and other disturbances 
(Baldocchi 2008). The L4_C products are considered 
appropriate for use with sparse in situ carbon observa-
tions, and regional fire and fossil fuel emission estimates 
to initialize, constrain, and optimize atmospheric transport 
model inversions of terrestrial CO2 source-sink activity 



SMAP HANDBOOK 111

(Peters et al. 2007). The L4_C product also provides 
global NEE estimates with enhanced spatial resolution, 
temporal fidelity and accuracy over previous methods, 
and additional information on component carbon fluxes, 
SOC stocks and underlying environmental constraints  
to land-atmosphere CO2 exchange. These new car- 
bon products are expected to be synergistic with other 
overlapping satellite Earth observations, including the 
NASA Orbiting Carbon Observatory (OCO-2) mission.  
The effective analysis and integration of SMAP and  
OCO-2 products, including new global GPP observa- 
tions from canopy fluorescence and atmospheric carbon 
concentrations, will require advances in model inversion 
and data assimilation frameworks for effective cross- 
sensor scaling and integration, but will likely lead to  
better understanding and improved model predictions  
of the global carbon cycle and climate feedbacks. 
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7. Science Data Calibration and Validation 

I. Introduction

A. Objectives

SMAP mission science requirements are contained in 
the Level 1 science requirements document: Science 
Requirements and Mission Success Criteria (SRMSC). 
Included in this document are requirements for accuracy, 
spatial resolution, and temporal revisit for the soil moisture 
and freeze/thaw measurements, and mission duration, for 
both baseline and minimum missions. Also stated in the 
SRMSC is the requirement that a Calibration and Valida-
tion (Cal/Val) Plan be developed and implemented to min-
imize and assess random errors and spatial and temporal 
biases in the soil moisture and freeze/thaw estimates, and 
that the SMAP validation program shall demonstrate that 
SMAP retrievals of soil moisture and freeze/thaw state 
meet the stated science requirements.

The SMAP Cal/Val Plan includes pre-launch and post-
launch activities starting in Phase A and continuing after 
launch and commissioning through the end of the mission 
(Phase E). The scope of the Cal/Val plan is the set of 
activities that enable the pre- and post-launch Cal/Val 
objectives to be met.

The pre-launch objectives of the Cal/Val program are to:

•	 Acquire instrument data necessary for the calibration 
of SMAP Level 1 L-Band sensor products (brightness 
temperatures and backscatter cross-section);

•	 Acquire and process data with which to calibrate, 
test, and improve models and algorithms used for 
retrieving SMAP Level 2-4 science data products;

•	 Develop and test the infrastructure and protocols for 
post-launch validation; this includes establishing an in 
situ observation strategy for the post-launch phase.

The post-launch objectives of the Cal/Val program are to:

•	 Verify and improve the performance of the sensor 
and science algorithms;

•	 Validate the accuracy of the science data products. 

B. Cal/Val Program Deliverables

The deliverables of the SMAP Cal/Val Program fall in the 
following six categories: 

•	 SMAP Science Cal/Val Plan document;

•	 Implementation plans for identified pre- and post-
launch field campaigns;

•	 Reports documenting results, archival, and analyses 
of pre-launch field campaigns and data acquisitions;

•	 Beta Release and Validation report for L1 data ac-
companying archived data (at IOC plus three and six 
months, respectively);

•	 Beta Release and Validation report for L2-L3 data 
accompanying archived data (at IOC plus three and 
twelve months, respectively); 

•	 Validation report for L4 data (accompanying archived 
data at post-IOC plus twelve months).

II. Overview of Validation Methodology

A. Background

In developing the Cal/Val plan for SMAP there are prece-
dents and experiences that were utilized. The Committee 
on Earth Observation Satellites (CEOS) Working Group on 
Calibration and Validation (WGCV) (see http://calvalportal.
ceos.org/CalValPortal/welcome.do) has established stan-
dards that provided a starting point for SMAP. The Land 
Products Sub-Group (see http://lpvs.gsfc.nasa.gov) has 
expressed the perspective that “A common approach to 
validation would encourage widespread use of validation 
data, and thus help toward standardized approaches to 
global product validation. With the high cost of in situ data 
collection, the potential benefits from international cooper-
ation are considerable and obvious.”

Cal/Val has become synonymous in the context of re-
mote sensing with the suite of processing algorithms  
that convert raw data into accurate and useful geophysi-
cal or biophysical quantities that are verified to be self- 
consistent. Another activity that falls in the gray area is 
vicarious calibration, which refers to techniques that  
make use of natural or artificial sites on the surface of  
the Earth for the post-launch calibration of sensors. 

A useful reference in developing a validation plan is the 
CEOS Hierarchy of Validation (http://lpvs.gsfc.nasa.gov):

•	 Stage 1: Product accuracy is assessed from a small 
(typically < 30) set of locations and time periods by 
comparison with in situ or other suitable reference 
data. 

•	 Stage 2: Product accuracy is estimated over a signifi-
cant set of locations and time periods by comparison 
with reference in situ or other suitable reference data. 
Spatial and temporal consistency of the product and 
with similar products has been evaluated over global-
ly representative locations and time periods. Results 
are published in the peer-reviewed literature.  

•	 Stage 3: Uncertainties in the product and its asso-
ciated structure are well quantified from comparison 
with reference in situ or other suitable reference 
data. Uncertainties are characterized in a statistically 
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robust way over multiple locations and time periods 
representing global conditions. Spatial and temporal 
consistency of the product and with similar prod-
ucts has been evaluated over globally representative 
locations and periods. Results are published in the 
peer-reviewed literature.

•	 Stage 4: Validation results for stage 3 are system-
atically updated when new product versions are 
released and as the time-series expands.

A validation program would be expected to transition 
through these stages over the mission life span.

The SMAP mission is linked by a common L-band fre-
quency with the SMOS, Aquarius, ALOS-2 and SAOCOM 
missions, and by its soil moisture products with the 
GCOM-W and ASCAT missions (operating at C-band and 
higher frequencies). All of these missions could be gener-
ating soil moisture products at the same time; therefore, 
SMAP will attempt to cooperate in their validation activities 
to improve the efficiency and robustness of its Cal/Val. 

B. Definitions

In order for the Cal/Val Plan to effectively address the 
mission requirements, a unified definition base is needed.  
The SMAP Cal/Val Plan uses the same source of terms 
and definitions as the SMAP Level 1 and Level 2 require-
ments. These are documented in the SMAP Science 
Terms and Definitions document (in draft, 2010), where 
Calibration and Validation are defined as follows:

•	 Calibration: The set of operations that establish, 
under specified conditions, the relationship between 
sets of values or quantities indicated by a measuring 
instrument or measuring system and the correspond-
ing values realized by standards.

•	 Validation: The process of assessing by independent 
means the quality of the data products derived from 
the system outputs. 

The L2 product requirements are interpreted in Reichle 
et al. 2010 for computing the validation quality metric.

Before releasing validated products the mission is required 
to release beta products. The maturity of the products in 
the beta release is defined as follows: 

•	 Early release used to gain familiarity with data  
formats. 

•	 Intended as a test bed to discover and correct errors. 

•	 Minimally validated and still may contain significant 
errors. 

•	 General research community is encouraged to partic-
ipate in the QA and validation, but need to be aware 
that product validation and QA are ongoing. 

•	 Data may be used in publications as long as the 
fact that it is beta quality is indicated by the authors. 
Drawing quantitative scientific conclusions is dis-
couraged. Users are urged to contact science team 
representatives prior to use of the data in publica-
tions, and to recommend members of the instrument 
teams as reviewers. 

•	 The estimated uncertainties will be documented. 

•	 May be replaced in the archive when an upgraded 
(provisional or validated) product becomes available.

C. Validation Methods, Resources, and Data  
Availability

A valuable lesson learned in global land imaging has 
been that validation is critical for providing the accuracy 
and credibility required for widespread product usage. 
Supporting information must be based on quantitative es-
timates of uncertainty for all products. For satellite-based 
retrievals, this should include direct comparison with in-
dependent correlative measurements. The assessment of 
uncertainty must also be conducted and presented to the 
community in normally used metrics in order to facilitate 
acceptance and implementation. SMAP will utilize a wide 
range of methodologies in calibrating and validating the 
mission science products, these include:

•	 Stable, known, homogeneous targets

•	 In situ networks

•	 Satellite products

•	 Model-based products

•	 Field experiments (tower- and aircraft-based SMAP 
instrument simulators)

Some of these methodologies will be better suited to a 
specific product than others. Matching these to SMAP 
products will be addressed in later sections. The follow-
ing section discusses each of these techniques in more 
detail.

Another important consideration in developing the Cal/Val 
Plan is that SMAP will provide global products. There-
fore, product validation should be representative of a 
wide range of global climate and vegetation conditions. 
Obviously the logistics and potential costs of conducting 
a fully comprehensive program may be beyond the ca-
pabilities available. Success will require partnerships that 
leverage ongoing programs, both within the U. S. and 
internationally. 
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1) Stable, Known, Homogeneous Targets

During post-launch Level 1 calibration, the observation 
of external calibration targets will commence in order to 
remove calibration biases, tune calibration algorithms, and 
track and remove long-term instrumental drifts. These 
“standards” will either 1) be used directly for calibration 
by employing a modeled value of their brightness or 
backscatter, or 2) be the intermediate means of transfer 
from the calibration of another satellite system operating 
at L-Band (such as SMOS, Aquarius, or PALSAR). Either 
way, the ultimate “absolute calibration” of the SMAP 
Level 1 products will be against these selected external 
standards. Because these standards are assumed to 
have known brightness temperature or NRCS values and 
stability characteristics, long-term drifts can also be de-
tected and removed. These targets shall include, but are 
not necessarily limited to, cold sky background, the open 
ocean, Antarctica, and the Amazon.

2) In Situ Networks

In situ soil moisture, surface and air temperature, surface 
flux, and additional land surface characteristic obser-
vations will be important in validating science products 
from the SMAP mission. These data will also be valuable 
throughout the development phase of the mission to sup-
port field campaigns, modeling, and synergistic studies 
using AMSR 2, PALSAR, SMOS, and Aquarius.

The characteristics of an ideal in situ validation resource 
for SMAP will depend upon the product. However, the 
following features apply to all;

•	 Represents a spatial domain approximately the size 
of the retrieval grid product (3, 9, and 36 km). Since 
in situ observations typically represent an area much 
smaller than the satellite product, this means that 
scaling must be addressed using multiple sample 
sites that satisfy statistical criteria or with an alterna-
tive technique.

•	 Includes numerous domains in a variety of climate/
geographic regions.

•	 Provides data in near real time with public availability.

•	 Has the potential for continued operation.

•	 Includes a wide range of related meteorological 
measurements.

The L2 through L4 soil moisture products share common 
features (measurements of soil moisture); however, the 
requirements of the L3_FT_A and L4_C are different from 
these and each other. Therefore, each will be discussed 
separately.

Another important consideration for SMAP Cal/Val 
implementation (which will utilize data from a variety of 
observing programs with varying objectives) is establish-
ing global consistency in the correlative data. In the case 
of freeze/thaw, there are many potential sites but much 
of the data will come from operational meteorological 
observatories that have well established standards. For 
net ecosystem CO2 exchange (NEE), most of the data 
come from national and international surface flux ob-
serving networks. Although there are a limited number of 
these sites, collaboration has resulted in standards for the 
relevant variables. The most problematic in situ observa-
tions are those of soil moisture. Almost every soil moisture 
installation and network has some variation in its instru-
mentation and design that must be taken into consider-
ation. As a result, the SMAP project has devoted more 
time and attention to resolving issues associated with soil 
moisture observations than with FT and NEE, which have 
established standards. Additional details for soil moisture, 
freeze/thaw, and related resources are provided in the 
following sections.

Soil Moisture. Based upon the SMAP mission require-
ments, in addition to the list of characteristics above, an 
ideal in situ soil moisture resource would include verified 
surface layer (5 cm soil depth) as well as the 0–100 cm 
profile observations. An initial survey of available resourc-
es conducted in 2008 indicated that very few could meet 
the requirements for an ideal validation site and that the 
overall number of sites was limited. 

The resources identified in the survey can be grouped into 
two distinct categories;

•	 Sparse networks that provide only one site (or possi-
bly a few sites) within a satellite grid product.

•	 Dense networks that provide multiple sampling sites 
within a spatial domain matching a SMAP product 
grid product.

Sparse networks are often operational and satisfy data 
latency and availability requirements. At the time of the ini-
tial survey, the only dedicated soil moisture program was 
the Soil Climate Analysis Network (SCAN) operated by the 
U. S. Department of Agriculture (USDA) Natural Resourc-
es Conservation Service. Covering almost every state in 
the U. S. (Schaefer et al., 2007), SCAN satisfied many of 
the requirements mentioned above with two exceptions; 
they are single point measurements with no supporting 
scaling studies and have not been rigorously verified. 

Another example of a sparse network is the Oklahoma 
Mesonet (http://www.mesonet.org/) that provides soil 
moisture and a wide range of other variables at over 90 
stations in the state of Oklahoma. In the case of the Okla-
homa Mesonet, there are also issues with the real time 
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and public availability of the data. Over the past few  
years, the National Oceanic and Atmospheric Adminis-
tration (NOAA) has implemented the Climate Reference 
Network (CRN) (http://www.ncdc.noaa.gov/crn/), which 
shares many of the features of SCAN (>100 sites  
in the U. S.) and includes a wide range of additional  
measurements.

Freeze/Thaw. Ideally, the freeze/thaw (FT) in situ valida-
tion resources should include reference (2 m height) air 
temperature, vegetation (stem and canopy) temperature 
and surface (<10 cm depth) soil temperature measure-
ments with high temporal fidelity (daily or better) sampling 
and representation over the observed range of climate, 
terrain, land cover and vegetation biomass conditions. 
As noted for soil moisture, these measurements should 
also satisfy the general requirements listed above. Unlike 
soil moisture measurements, reference air temperature 
observations are readily available from global operational 
meteorological networks and are subject to international 
standards. In addition, air temperature is not expected 
to exhibit as much spatial variability as soil moisture. 
However, vegetation and soil temperature observations 
are available at relatively few sites with variable standards; 
these measurements also exhibit larger characteristic 
spatial heterogeneity than surface air temperature.

Although standard meteorological networks can be used 
for validation of FT, there is a need for some observations 
using dense networks with additional surface measure-
ments. Almost all FT resources are sparse networks.

Net Ecosystem Exchange. Surface flux towers are the 
primary requirement for validating the L4 C product. As 
noted for soil moisture, these measurements should also 
satisfy the general requirements listed above. Surface 
flux observations include direct eddy covariance mea-
surements of NEE and measurement based estimates 
of component carbon fluxes including gross primary 
production (GPP) and ecosystem respiration (Reco). The 
tower site observations include other environmental mea-
surements (e.g. air and soil temperature, humidity, solar 
radiation, wind direction and velocity, sensible and latent 
energy flux) designed for characterizing the surface ener-
gy balance, and the environmental drivers and constraints 
on vegetation photosynthetic activity. The carbon flux data 
involve time integrated measurements of land-atmosphere 
CO2 exchange at frequent (e.g., half-hourly) intervals, 
which can be aggregated over longer (e.g., daily) time 
periods. Sensor malfunctions, maintenance activities, 
and data quality control and screening procedures can 
result in temporal gaps in the carbon flux measurement 
record; the resulting data records are then gap-filled using 
relatively standardized procedures, including physical 
and empirical modeling of missing data from supporting 
environmental data in order to obtain complete observa-

tional records, which can then be temporally aggregated 
to daily and longer time periods. The current global tower 
network now involves more than several hundred individ-
ual sites representing most vegetation biome types and 
climate regimes. These data are available from national 
and international cooperating networks with agreed upon 
standards for instrumentation, data processing and distri-
bution. Many of these sites, particularly those with longer 
(>1 yr) operational records, have relatively well document-
ed measurement accuracy and uncertainty. Most tower 
flux observations are representative of a local (~1-km 
resolution) sampling footprint that may not reflect regional 
conditions within the overlying (~9-km resolution) SMAP 
product footprint, particularly in areas with heterogeneous 
land cover and terrain conditions. Selection of suitable 
tower validation sites will involve pre-screening of sites 
on the basis of having relatively homogeneous land cover 
and terrain conditions within the overlying SMAP product 
window.

3) Synergistic Satellite Observations

Observations by other satellite instruments both before 
and after launch can be utilized for calibration and valida-
tion of SMAP. For pre-launch calibration and validation the 
primary role of spaceborne observations will be the testing 
of algorithms, using Level 1 products to produce SMAP 
Level 2 and 3. Level 2 products (soil moisture) from these 
missions can be used to evaluate the SMAP algorithm 
performance. For post-launch calibration and validation 
the alternative mission observations will provide products 
that can be compared with those from SMAP. 

The following lists some of the most relevant satellite 
products that could be used before and/or after the 
launch for SMAP calibration and validation (responsible 
agency and launch year in parenthesis):

•	 SMOS (ESA, 2009): Global L-band horizontal and 
vertical polarization brightness temperature and sur-
face soil moisture; pre-launch and post-launch 

•	 ALOS PALSAR (JAXA, 2006): Multiple resolution 
backscatter product based on L-band SAR; pre-
launch 

•	 MetOp ASCAT (ESA, 2006) and Sentinal-1 (ESA, 
2013): Soil moisture index based on C-band back-
scatter; pre-launch and post-launch

•	 Aquarius (NASA/CONAE, 2011): Simultaneous 
L-band brightness temperature and backscatter; 
experimental soil moisture product; pre-launch and 
post-launch 
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•	 GCOM-W AMSR 2 (JAXA, 2012): Soil moisture prod-
uct based on C- and X-band brightness temperature; 
pre-launch and post-launch

•	 SAOCOM (CONAE, 2015): Backscatter and soil 
moisture products based on L-band SAR; post-
launch

•	 ALOS-2 PALSAR (JAXA, 2014): Multiple resolution 
backscatter product based on L-band SAR; possibly 
pre-launch and post-launch

These satellite programs measure either brightness 
temperature or backscatter at L-band (Aquarius provides 
both) and/or produce a soil moisture product from their 
observations. The options and the value of these other 
satellites depend largely on the overlap of the mission with 
SMAP. However, for example, in the case of SMOS the 
measurements of brightness temperature will be extreme-
ly valuable, even if the data are limited to the pre-launch 
period, because they represent the first L-band brightness 
temperature measurements from space. 

Cross-calibration exercises between different satellite 
instruments have been successfully carried out improving 
the quality of the time series created by the instruments in 
question (e.g., Atlas et al. 2008; Liu et al. 2008). For inter-
comparisons between the satellites, the product accuracy 
requirements of the other missions are of significance. 
The most relevant intercomparison mission is SMOS 
(since it is L-band and has a soil moisture product at the 
same spatial resolution), which has soil moisture accuracy 
requirements equivalent to SMAP.

The limitations of this type of comparison are the quality 
of the alternative product, differences in overpass times/
days, and accounting for system differences affecting the 
soil moisture product.  In the case of GCOM-W, which 
has a 01:30 AM / 01:30 PM overpass time, confusion 
factors would include data at a different time of day (from 
the SMOS/SMAP overpass time of 06:00 AM) and con-
tributing depth issues associated with GCOM-W’s C-band 
frequency (Jackson 2007). The SMAP team has actively 
participated in the validation of these alternative products 
during the SMAP pre-launch period, which has provided 
us with knowledge of the quality of both the SMOS and 
GCOM-W soil moisture.  

4) Model-Based Validation Approaches

Validation based on land surface modeling and data 
assimilation will be used to complement in situ and satel-
lite-based validation. As discussed in previous sections, 
validation against in situ observations is difficult because 
the observation sites include limited geographic regions 
and environmental settings and is complicated by the 

mismatch between the point-scale of the in situ measure-
ments and the distributed (order of km) scale of the SMAP 
data products. Hydrological land surface models and data 
assimilation approaches provide continuous (in space and 
time) soil moisture products that match the spatial support 
of SMAP soil moisture products. Model-based validation 
can start immediately upon launch and thereby offers a 
key advantage for meeting the ambitious IOC+12-month 
validation deadline.

Several Numerical Weather Prediction (NWP) centers 
(including ECMWF, NCEP, and NASA/GMAO) routinely 
produce operational or quasi-operational soil moisture 
fields at a scale comparable to the SMAP radiometer 
product. These data products rely on the assimilation of 
a vast number of atmospheric observations (and select 
land surface observations) into General Circulation Models 
(GCMs). Although there are many caveats that need to be 
considered in using these data, they are readily available 
and they are consistent with the atmospheric forcing 
(precipitation and radiation) and land use information 
that determine the spatial and temporal patterns in soil 
moisture fields. Moreover, surface temperature from at 
least one NWP system will be used in the generation of 
the SMAP L2_SM_P data product. Output from these 
systems is necessary for the application the validation 
activities described below. In this context, NWP data may 
be used directly or as forcing inputs to more customized 
hydrological modeling systems.

Land Surface Modeling Comparisons. In the simplest 
case, land surface models (either embedded in a NWP 
system or in off-line mode) can be used to generate soil 
moisture products at larger (basin-wide and continental) 
scales using land surface and meteorological forcing 
datasets that are independent of the SMAP remote sens-
ing data. The resulting soil moisture fields can then be 
compared with the remotely sensed soil moisture product 
at validation sites over diurnal and seasonal cycles. These 
model-derived soil moisture fields can also be used to ex-
tend the comparisons to larger space and time domains 
than available from in situ observations. Model-based 
soil moisture fields can also be used to derive brightness 
temperature and backscatter using forward modeling. 
These estimates can be valuable in validating the Level 1 
SMAP products.

The inherent uncertainty in any model-based soil mois-
ture product is an obvious limitation to such a validation 
approach. However, recent work has extended the 
application of so-called “Triple Collocation” (TC) approach-
es to soil moisture validation activities (Scipal et al. 2008; 
Miralles et al. 2010; Dorigo et al. 2010). These approach-
es are based on cross-averaging three independently 
acquired estimates of soil moisture to estimate the 
magnitude of random error in each product. A viable soil 
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moisture product triplet could consist of a passive remote 
sensing product, an active remote sensing product, and 
a model product (Scipal et al. 2008; Dorigo et al. 2010). 
In situ observations can also be used in place of one 
of these. If successfully applied, TC can correct model 
versus SMAP soil moisture comparisons for the impact of 
uncertainty in model product. However, TC cannot pro-
vide viable bias information and, therefore, only assesses 
the random error contribution to total RMSE. Note that 
TC can also be applied to reduce the impact of sam-
pling error when up-scaling sparse in situ measurements 
during validation against ground-based soil moisture 
observations.

Data Assimilation Approaches. The development of 
land surface modeling and data assimilation tools for 
SMAP synergistically provides an important framework for 
the supplemental calibration and validation of SMAP data 
products as well as the option to generate Level 4 data 
products.

An ensemble-based data assimilation system produces 
internal diagnostics that can be used to indirectly validate 
its output. One such diagnostic consists of the “innova-
tions” (or “observation-minus-forecast” residuals) that 
contrast the model-based forecast values directly with 
the observations. The assimilation system also produces 
corresponding error estimates. Specifically, the statistics 
of appropriately normalized innovations can be exam-
ined (Reichle et al. 2007; see also discussion of adaptive 
filtering in the L4_SM chapter). Through minor customi-
zations of the assimilation system, this approach can be 
applied to brightness temperature as well as soil moisture 
retrievals.

Data assimilation and land surface modeling systems also 
provide an opportunity to convert the impact of soil mois-
ture information into a more readily-measurable quantity. 
For example, Crow et al. (2010) develops and verifies a 
quasi-global soil moisture evaluation system that effective-
ly substitutes rain gauge measurements for ground-based 
soil moisture observations. The approach is based on 
evaluating the correlation coefficient between antecedent 
rainfall error and analysis increments (i.e.. the net addition 
or subtraction of modeled soil water accompanying the 
assimilation of a single soil moisture estimate) that are pro-
duced by a land data assimilation system. This correlation 
coefficient provides a reliable linear metric for the ability of 
a given soil moisture product to accurately characterize 
soil moisture anomalies. The use of rain observations as 
a source of verification expands potential soil moisture 
validation locations from isolated sites to much broader 
regions in which rain-gauge measurements are available 
for retrospective analysis. Bolten et al. (2010) uses a simi-
lar methodology to assess the added utility of assimilating 
AMSR-E soil moisture retrievals for root-zone soil moisture 

monitoring in the presence of uncertain precipitation forc-
ing into a land surface model. 

5) Field Experiments

Field experiments can provide very detailed information; 
however, the costs and logistics limit how extensive these 
can be spatially and temporally. During pre-launch field 
experiments datasets served a valuable role by providing 
diverse but controlled condition data that was used for 
developing algorithms, establishing algorithm parame-
terization, and defining validation site scaling properties. 
The most relevant pre-SMAP soil moisture campaigns are 
summarized in Colliander et al. (2012). During its develop-
ment period, SMAP conducted or collaborated in several 
soil moisture campaigns that culminated in the extensive 
SMAPVEX12. Table 16 summarizes these campaigns 
and provides links to more detailed descriptions and data 
archives. In addition, overviews of CanEx10 (Magagi et al. 
2013), SMAPVEX12 (McNairn et al. 2014), and SMAPEx 
(Panciera et al. 2014) are published. Post-launch airborne 
field experiments will also be valuable in validating SMAP 
products and resolving, receiving anomalies, and im-
proving algorithms. Further details are provided in a later 
section.

III. Calibration and Validation Requirements 
of SMAP Products

Assessing whether the requirements of the SMAP 
products are met is the primary objective of the Cal/Val 
Plan. The requirements for the algorithms, i.e. ATBDs, 
flow down from the product. In the ATBDs, each product 
algorithm team identifies what calibration and validation 
activities are needed to meet the product requirements. 
These activities then become another set of requirements 
for the Cal/Val Plan. This section focuses on detailing the 
requirement defined by the ATBDs.

Subsequent sections describe how the Cal/Val Program 
addresses these requirements together with the other 
mission requirements. 

A. Level 1 — Sensor Products

Level 1 SMAP science products are the calibrated sensor 
outputs (brightness temperature and radar backscatter).  
The accuracy of these products depends on the pre-
launch calibration model and the calibration algorithm and 
coefficients applied in the post-launch processing. 

Table 17 lists the Level 1 products, their requirements for 
spatial resolution and accuracy, and associated pre-
launch and post-launch Cal/Val requirements. Products 
L1B_TB and L1C_TB are time-ordered and swath- and 
Earth-gridded (collocated with radar) brightness tempera-
tures, respectively. Products L1B_S0_LoRes and L1C_
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Name

Table 16.  Field campaigns relevant to SMAP Cal/Val. 

SGP99

 
SMEX02

 
CLASIC

 
SMAPVEX08

 

CanEx10

 
 
SMAPVEX11

 
 
SMAPEx

 

SMAPVEX12

 
 

Midwest Drought

Definition Location Archive

Southern Great Plains 
1999

Soil Moisture Experi-
ment 2002

Cloud Land Surface 
Interaction Campaign

Soil Moisture Active 
Passive Validation 
Experiment 2008

Soil Moisture Validation 
Experiment 2008

 
Soil Moisture Active 
Passive Validation 
Experiment 2011

Soil Moisture Active 
Passive Validation 
Experiments 

Soil Moisture Active 
Passive Validation 
Experiment 2012

1999

 
2002

 
2007

 
2008

 
 
2010

 
2011

 
 
2011

 

2012

 
 

2012

Will be posted at National Snow 
and Ice Data Center (nsidc.org)

National Snow and Ice Data 
Center (nsidc.org)

Will be posted at National Snow 
and Ice Data Center (nsidc.org)

Will be posted at National Snow 
and Ice Data Center (nsidc.org)

 
University of Sherbrooke (pages.
usherbrooke.ca/canexsm10)

 
Will be posted at National Snow 
and Ice Data Center (nsidc.org)

 
www.smapex.monash.edu.au

 
 
University of Sherbrooke (pages.
usherbrooke.ca/smapvex12)

Will be posted at National Snow 
and Ice Data Center (nsidc.org)

Jet Propulsion Laboratory 
(uavsar.jpl.nasa.gov)

Time 
Period

Aircraft 
Sensors

Oklahoma

 
Iowa

 
Oklahoma

 
Maryland

 
 
Saskatchewan

 
 
Oklahoma

 

Australia

 

Manitoba

  
 
 
USA

PALS

 
PALS 
AIRSAR

PALS

 
PALS

 
 
UAVSAR  
EC L-band 
radiometer

PALS

 
 
PBMR
PLMR

 
PALS 
UAVSAR

 

 
UAVSAR

S0_HiRes (West et al. 2012) are the low-resolution (real 
aperture) and high-resolution (synthetic aperture) radar 
cross-sections, respectively.

A separate document has been prepared that describes 
the calibration and validation that will be used for the  
Level 1 products (Hudson and Peng 2010). 

B. Level 2 and 3 — Geophysical Products

Level 2 products contain derived geophysical parameters 
(soil moisture, freeze/thaw) whose accuracy depends on 
the accuracy of the input Level 1 sensor data, ancillary 
data, and the Level 2 geophysical retrieval algorithms. 
(See Table 18 for Level 2/3 products.) 

1) Metrics 

The soil moisture accuracy requirements will be sat-
isfied by the L2 and L3 soil moisture products at the 

corresponding horizontal resolution. Specifically, the 
requirement implies that for the selected areas for which 
validating in situ observations are available from verified 
sites, the SMAP surface (0–5 cm) soil moisture products 
must satisfy RMSE<0.04 m3/m3 (after removal of long-
term mean bias) in the case of active/passive and passive 
products and RMSE<0.06 m3/m3 (after removal of long-
term mean bias) in the case of the active product

The L3 freeze/thaw product will provide estimates of land 
surface freeze/thaw state expressed as a binary (frozen or 
thawed) condition. The baseline L3 freeze/thaw product 
will be provided for land areas north of 45ºN with a mean 
classification accuracy of 80% at 3-km spatial resolution 
and 2-day average temporal fidelity. The accuracy of the 
L3 product is determined by comparison of the freeze/
thaw state map to selected in situ temperature measure-
ment networks within northern (≥45°N) vegetated land 
areas for the baseline product. 
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(1) The radiometer development, implemen-
tation and calibration is the responsibility of 
GSFC. The antenna development, imple-
mentation, testing, and characterization is 
the responsibility of JPL.

(2) SMAP Brightness Temperature (TB) For-
ward Simulator: based on ocean and land 

surface radiative transfer model (RTM). 
The simulator includes the following 
sources and effects: 

•	Solar	direct,	reflected
•	Lunar	direct,	reflected
•	Galactic	direct,	reflected
•	Land,	atmosphere,	ocean

•	Faraday	rotation
•	Antenna	sidelobes

(3) Assumptions in current error budget

•	 Earth	sidelobe	scene	known	to	6	K
•	 Cross-pol	TB	known	to	2	K
•	 Space	scene	known	to	1	K
•	 Solar	flux	known	to	20	s.f.u.

Level 1

Table 17. Level 1 products and associated Cal/Val requirements. The 
columns are divided for product type; spatial resolution of the instrument 
output for L1B_TB, L1B_S0, L1C_S0 and grid resolution for L1C_TB; 

L1B_TB

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Resolution Information and data required for performing Cal/Val

40

 

•	Pre-launch	calibration	parameters

•	Sky	TB	map	for	cold	sky	calibration

•	Ocean	and	land	target	RTM	with	overall	0.4	K	
uncertainty

•	Geolocation:	Antenna	pointing	information;	
ocean RTM; coastlines

•	Faraday	rotation:	IRI	and	IGRF	databases;	
Aquarius and SMOS values; Rotation angles 
from astronomers, geostationary satellites 
and GPS satellites

•	Atmospheric	correction:	global	temperature	
and humidity profiles

•	Antenna	pattern	correction:	Nominal	antenna	
pattern; Antenna pointing information; SMAP 
TB Forward Simulator 2,3

•	Aquarius	radiometer	brightness	 
temperatures

•	SMOS	radiometer	brightness	 
temperatures

•	Aircraft-based	observations	during	field	 
campaigns

•	SMAP	L1B	and	L1C	data	over	coastlines	and	
high TB contrast locations

 
 
•	Sky	TB	map	for	CSC

•	Pre-launch	calibration	parameters	

•	Established	uniform,	isotropic,	stable	Earth	
targets 

•	Data	from	contemporaneous	radars	(Aquari-
us, PALSAR, UAVSAR, SAOCOM, etc.) 

•	Aircraft-based	observations	during	field	cam-
paigns

•	Receive	only	data	acquisition	(for	RFI)	

•	L1B_S0	

•	Checks	for	scalloping	…

Accuracy

•	High-level	output	coax-
ial noise source, 0.3 K 
accuracy (to be modified 
from existing source called 
RATS)

•	Polarimetric	coaxial	noise	
source: existing source 
called CNCS (Peng and Ruf 
2008)

•	L-band	warm	blackbody	
(for feed horn) with return 
loss >35 and thermal stabil-
ity of 0.2°C (existing)

•	L-band	LN2-cooled	
blackbody, 1 K accuracy 
(existing)

•	Controlled	thermal	 
environment

•	Antenna	pattern	and	 
reflector emission verified 
by antenna team 1

•	C-band	AMSR-E	data	over	
Florida region

•	Prototype	SMAP-like	data-
set from the Testbed over 
Florida region

•	TBD

Products (km) Pre-LaunchRequirement Post-Launch

1.3 K (H, V)–

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

accuracy for horizontal and vertical polarization, and for 3rd Stokes 
parameter of radiometer and HV-combination of radar; and pre-launch 
and post-launch Cal/Val requirements.

L1C_TB

L1B_S0

40

L1C_S0

1.3 K (H, V)

1 dB (HH, 
VV); 1.5 dB 
(X-pol)

30

3 •	TBD
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Level 2/3

Table 18. Level 2/3 products and associated Cal/Val requirements. The 
columns are divided by product type; grid resolution; accuracy require-

L2_SM_P

L2_SM_A

L2_SM_A/P

L3_FT_A

Grid Information and data required for performing Cal/Val

36

3

9

3

•	Algorithm	parameterization	
established

•	 In	situ	core	validation	sites	2 

•	 In	situ	sparse	networks	

•	SMOS,	GCOM-W	and	ASCAT	
soil moisture  
products 

•	 Independent	hydrologic	model	
outputs

•	Field	experiments	1 

•	Algorithm parameterization 
established 

•	 In	situ	core	validation	sites	2 

•	 In	situ	sparse	networks;		

•	ALOS-2	and	SAOCOM	soil	
moisture products 

•	 Independent	hydrologic	model	
outputs  

•	Field	experiments	1

•	Algorithm	parameterization	
established 

•	 In	situ	core	validation	sites	2 

•	 In	situ	sparse	networks	

•	 Independent	hydrologic	model	
outputs  

•	Field	experiments	1 

•	Algorithm	parameterization	
established 

•	 In	situ	sparse	networks	
(NRCS SNOTEL, SCAN, 
FLUXNET, ALECTRA, WMO) 
frozen/non-frozen status 

•	Field	experiments	(e.g.,	PALS)	
with in situ sparse network 
sites (e.g., FLUXNET)

Accuracy

•	Ancillary	datasets	needed	by	 
baseline and option algorithms 

•	Global	Testbed	(GloSim)	retrieval	 
simulations using synthetic  
observation conditions  

•	Field	experiment	data	(SGP99,	
SMEX02, CLASIC, SMAPVEX08, 
CanEx-SM10, SMAPVEX12) for  
surface SM 1 

•	SMOS	brightness	temperature	and	 
soil moisture products, ancillary data 
and validation products

•	Ancillary	datasets	needed	by	baseline	
and option algorithms

•	Global	Testbed	(GloSim)	retrieval	
simulations using synthetic observation 
conditions 

•	Field	experiment	data	(SGP99,	
SMEX02, CanEx-SM10, SMAPVEX12 
and tower-based campaigns) for  
surface SM 1,1b

•	Satellite	(PALSAR)	data

•	Ancillary	datasets	needed	by	baseline	
and option algorithms

•	Global	Testbed	(GloSim)	retrieval	
simulations using synthetic observation 
conditions 

•	SGP99,	SMEX02,	CLASIC,	SMA-
PVEX08, SMAPVEX12 datasets  

•	Multi-scale	and	long-duration	airborne	
field experiment 1 data capturing  
temporal soil moisture and diversity of 
land cover type

•	Ancillary	datasets	needed	by	baseline	
and option algorithms

•	Global	Testbed	(GloSim)	retrieval	
simulations using synthetic observation 
conditions

•	Testbed	simulations	with	in	situ	sparse	
networks (NRCS SNOTEL and SCAN, 
FLUXNET, ALECTRA, WMO) frozen/
non-frozen status and SMOS and  
PALSAR 

•	SMOS,	PALSAR,	PALS	time	series	 
data over test regions 

•	Field	experiments	over	complex	terrain	
and land cover 3

Products (km) Pre-Launch Post-Launch

0.04  
m3/m3

0.06   
m3/m3 

0.04  
m3/m3

80%

ment of the product; revisit time; pre-launch and post-launch Cal/Val 
requirements.

Rep

3

3

3

2

(d)
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Table 18. Footnotes

(1) Surface soil moisture (SM) experiments have the following 
baseline requirements (subsite is a part of the experiment do-
main, such as a field): 

•	 The soil moisture in the top 5 cm can be determined with 
dielectric probes with point location specific calibration 
through bulk density and thermo-gravimetric core sampling, 
which yields sample uncertainty no more than 0.04 m3/m3.

•	 The spatial sampling of surface SM is done following the 
methodology established for that specific location

•	 The soil texture is to be determined for each sampling point 
specifically through bulk density core samples.

•	 The land cover is classified according to the classes used 
 for the SMAP products.

•	 The vegetation is classified according to the classes used 
for the SMAP products.

•	 The vegetation water content measurements are calibrated 
through destructive thermo-gravimetric sampling.

•	 Soil temperature is determined at each sampling point. Site 
specific meteorological state is determined for air tempera-
ture and precipitation.

Some geophysical input parameters have greater impact on 
the radar soil moisture error (as opposed to the radiometer soil 
moisture) than others (such as roughness, and information on 
vegetation geometric and dielectric properties [see L2_SM_A 
ATBD for the complete list]). Therefore, this information should 
be available from the pre-launch field experiments to develop the 
algorithms. The procedures for doing this need to be established 
in the pre-launch phase. Furthermore, radar is more sensitive to 
the incidence and azimuth angle of the measurement than radi-
ometers primarily because of the high spatial resolution of radar 
needs to be considered in the experiments.

(2) In situ core validation sites (meaning an intense measurement 
site with established scaling from point measurements to satellite 
grid product) used in the post-launch soil moisture validation 
need to satisfy the following requirements:

•	 The soil moisture measured must provide an estimate of the 
state of the top 5 cm with well defined uncertainty brackets

•	 For L2_SM_A, surface roughness measurements at appro-
priate time & spatial scales are highly desired.

•	 The spatial sampling of the site must be such that a defined 
resolution scaling scheme can be applied.

 

(3) In situ frozen/non-frozen status will be determined as a com-
posite ensemble of vegetation, soil and air temperature measure-
ments where available, and will be compared to coincident grid 
product L3 freeze/thaw measurements for areas of the globe 
where seasonally frozen temperatures are a major constraint 
to hydrological and ecosystem processes. The fulfillment of the 
requirements will be assessed by comparing SMAP freeze/thaw 
classification results and in situ frozen or non-frozen status. The 
in situ resource should provide a strategy for spatial up-scaling of 
in situ measurements commensurate with the 3-km spatial scale 
of the satellite retrieval. Attention should be given to landscape 
heterogeneity within the scope of the validation site or sites in the 
upscaling strategy.

Measurements supporting freeze/thaw Cal/Val activities should 
meet the following minimum requirements:

•	 Measurement of surface (screen height) air temperature.

•	 Measurement of surface (up to 10 cm depth) and profile (up 
to 1 m depth) soil temperatures. 

•	 Measurement of vegetation temperature (when significant 
vegetation present).

•	 In situ temperature measurements should be sufficient to 
characterize the variability in local microclimate heterogene-
ity within a spatial scale compatible with the SMAP freeze/
thaw product.

•	 To provide uniformity across sites, the local land cover of 
the site should be consistent with a global (IGBP-type) land 
cover classification.  

•	 Each land cover class within the validation site should be 
captured within the suite of temperature measurements 
such that the local vegetation and land cover heterogeneity 
is represented.

•	 Measurements should have sufficient temporal fidelity to 
capture seasonal and diurnal temperature and freeze/thaw 
patterns. 

Desired methods for measuring air, soil, and vegetation tempera-
tures include thermocouple type measures of physical tem-
peratures and thermal IR type measurements of surface “skin” 
temperatures with consistent and well documented accuracy 
and error sources over a large (e.g., –30°C to 40°C) temperature 
range.

2) Information and Data Required for Cal/Val

Table 18 shows the Level 2/3 products, their requirements 
for spatial resolution, accuracy, and revisit time, and the 
associated Cal/Val requirements. Products L2_SM_P, 
L2_SM_A and L2_SM_AP are soil moisture products (top 
5 cm of soil), based on radiometer-only, radar-only, and 
combined radar-radiometer data, respectively. Product 
L3_FT_A is the freeze/thaw state product is based on 
radar data only.

C. Level 4 — Geophysical Products

Level 4 products contain geophysical parameters whose 
accuracies depend on the accuracies of the input Level 1 
and Level 2–3 data products, other input data, and the 
model and assimilation technique. 

1) Metrics

The soil moisture accuracy requirements will be satisfied 
by the L4 soil moisture product at the 9-km horizontal 
resolution. Specifically, the requirement implies that for  
the selected areas for which validating in situ observa- 
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Level 4

Table 19. Level 4 products and associated Cal/Val requirements. The 
columns are divided by product type; grid resolution; accuracy require-

L4_SM

L4_C

Grid Information and data required for performing Cal/Val

9

9

•	 Surface SM: see Level 2

•	 Root-zone SM: Core and Sup-
plemental Validation Sites (incl. 
SCAN, CEOP, Oklahoma Me-
sonet, USCRN, GPS, COSMOS)

•	 Precipitations observations 

•	 Internal data assimilation  
diagnostics

•	 SMAP L4 SM 

•	 In situ CO2 eddy flux (e.g., 
FLUXNET) 1

Accuracy

•	 Testbed simulations 

•	 Satellite observations (SMOS, 
Aquarius, PALSAR) 

•	 In situ core sites and sparse 
networks 

•	 Internal data assimilation  
diagnostics

•	 Satellite data (e.g., MOD17 
product) 

•	 GEOS-5 

•	 In situ CO2 eddy flux (e.g., 
FLUXNET)

•	 Internal data assimilation  
diagnostics

Products (km) Pre-Launch Post-Launch

0.04  
m3/m3

30 

gC/m2/yr

ment of the product; revisit time; pre-launch and post-launch Cal/Val 
requirements.

Rep

3

3

(d)

(1) The accuracy of the L4_C outputs, including NEE and 
component carbon fluxes, will be established in relation to in 
situ tower eddy flux CO2 measurements and associated carbon 
budgets within regionally dominant vegetation classes following 
established protocols. The fulfillment of the NEE requirement will 
be assessed by comparing SMAP L4_C NEE output with in situ 
measurement-based CO2 flux estimates.

In order for a flux tower to be useful for NEE validation, it has to 
provide at minimum the following measurements: 

•	 Continuous daily (cumulative 24-hr) estimates of gross pri-
mary production (GPP), ecosystem respiration (Reco), and 
NEE with well defined and documented accuracy, including 
both systematic and random errors.

•	 Relatively homogeneous land cover and vegetation condi-
tions within an approximate 9-km x 9-km footprint commen-
surate with the resolution of the SMAP L4_C product. 

•	 To provide uniformity across sites, the local land cover of 
the site should be compatible with a global (IGBP-type) land 
cover classification.

•	 The local site should have a minimum level of supporting 
meteorological measurements including air temperature 
and humidity, surface (≤10 cm depth) soil moisture and soil 
temperature, precipitation, and snow depth (if present);  
these measurements should be continuously monitored and 
sufficient to capture local microclimate heterogeneity within 
the tower footprint.

•	 The local site should have a minimum level of supporting 
biophysical inventory measurements including surface 
(≤10 cm depth) soil organic carbon stocks, vegetation stand 
age class, land use, and disturbance history.

the associated Cal/Val requirements. L4_SM is a surface 
and root-zone soil moisture product, and L4_C is a net 
ecosystem exchange (NEE) product.

IV. Infrastructure Development for Validation

A major activity during the pre-launch phase of the SMAP 
mission was developing the infrastructure needed to con-
duct post-launch validation in an efficient manner. During 
the earlier stages of developing the SMAP Cal/Val Plan, 
Table 20 was developed to summarize the methodologies 
that would be used in Cal/Val and outstanding issues 
associated with these.

Of these issues, three demanded immediate actions by 
SMAP if they were going to be resolved. These all involved 
the in situ observations; 1) intercalibration between differ-

tions are available from verified sites, the SMAP surface  
(0–5 cm) and root zone soil moisture products must sat-
isfy RMSE<0.04 m3/m3 (after removal of long-term mean 
bias). 

The net ecosystem exchange (NEE) estimates from the 
L4_C product will be validated at 9-km resolution against 
the selected in situ observations from flux towers. Specifi-
cally, the requirement will be satisfied if the median RMSE 
against the validation is less than 30 g C m–2 yr–1 or 1.6 g 
C m–2 d–1 after removal of long-term mean bias.

2) Information, Data, and Processing Required for  
Cal/Val

Table 19 shows the two Level 4 products, their require-
ments for spatial resolution, accuracy, revisit time, and 
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Methodology

Table 20. Overview of the SMAP Cal/Val methodologies.

Core Validation 
Sites

Sparse
Networks

Satellite Products

 
Model Products

 
Field Experiments

Role

•	 In Situ Testbed
•	 Cal/Val Partners

•	 In Situ Testbed
•	 Scaling methods
•	 Cal/Val Partners

•	 Validation Studies
•	 Distribution matching

•	 Validation Studies
•	 Distribution matching

•	 Airborne simulators
•	 Partnerships

Issues

•	 In situ sensor calibration
•	 Limited number of sites

•	 In situ sensor calibration
•	 Up-scaling
•	 Limited number of sites

•	 Validation
•	 Comparability
•	 Continuity

•	 Validation
•	 Comparability

•	 Resources
•	 Schedule Conflicts

Accurate estimates of prod-
ucts at matching scales for a 
limited set of conditions

One point in the grid cell for 
a wide range of conditions
 
 
Estimates over a very wide 
range of conditions at 
matching scales

Estimates over a very wide 
range of conditions at 
matching scales

Detailed estimates for a very 
limited set of conditions

Actions

ent sensors used in different in situ networks, 2) up- 
scaling of the point-wise in situ measurement to the 
SMAP footprint scale, and 3) increasing the number and 
quality of the core validation sites. These efforts will be 
described in subsequent sections.

A. Comments on In Situ Soil Moisture Measurement

In situ measurement and scaling of soil moisture presents 
many challenges. As a result, there are a wide range of 
measurement techniques and protocols that have been 
adopted in practice. The value of an observing program 
to SMAP validation will depend upon (a) the quality of the 
measurements, (b) how the measurement relates to the 
validation criteria (in particular the depths and scales), 
and (c) the availability of the data in a timely manner. The 
following discussion focuses on the first two issues.

Although the providers of in situ data are likely to have 
conducted an assessment of the quality of their measure-
ments, if adequate calibration has not been conducted 
the SMAP project will have to make an assessment 
before using the data for validation.

In situ resources that will be the most relevant for SMAP 
soil moisture calibration and validation would provide an 
estimate of the volumetric soil moisture over the surface 
5 cm and the 100 cm depth of soil. In general, this will 
involve two steps: 1) establishing that the sensor provides 
the equivalent of the volumetric soil moisture that would 
be obtained using a reference standard, and 2) if the sen-
sor does not actually measure the defined layer, providing 
verification that the sensor values are well correlated to 
the mission product depths (0–5 and 0–100 cm). It should 
be noted that the 0–5 cm measurement is the highest 

priority and that this measurement is logistically easier to 
obtain and verify than the 0–100 cm depth measurement.

The recommended reference standard for characterizing 
volumetric soil moisture is the thermo-gravimetric (usually 
shortened to gravimetric) measurement method (Chapter 
3.1.2.1 in Dane and Topp 2002). This technique is time 
consuming to implement operationally; therefore, it is 
usually only used for calibration of sensors and in field 
campaigns. The soil moisture in a known volume (cm3) 
is characterized by weighing, then drying, and weighing 
again to obtain the mass of water (g). With a specific 
density of 1 cm3/g for water, the result is the volumetric 
soil moisture (cm3/ cm3).  

Most sensor manufacturers provide a calibration function 
for converting the sensor signal to soil moisture (some do 
not actually provide volumetric soil moisture but an alter-
native variable such as moisture–tension). These calibra-
tions are often based on limited laboratory studies and are 
often soil type specific; thus requiring site characterization 
for a more accurate estimate. Some operational networks 
have conducted supplemental laboratory analyses to im-
prove their products. An advantage of laboratory calibra-
tion is that a full range of soil moisture can be examined.

An alternative, or in some cases a complement, to labora-
tory calibration is site-specific calibration. The advantage 
of a site-specific calibration is that it incorporates soil type 
correction and peculiarities associated with the installa-
tion. As described later, it can also be used to correct for 
measurement depth differences. Disadvantages include 
repetitive site visits to capture a range of conditions and 
potential impacts from destructive sampling. Also, this 
approach is much easier to implement for surface layer 
measurements than the full profile.
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The most straightforward way to provide both items 
above is to sample the 0–5 cm soil layer using a volume 
extraction method, such as a ring coring tool.    

The other aspect that must be considered regarding the 
use of in situ observations for SMAP validation is how the 
measurement relates to the depths defined in validation 
criteria. Each type of sensor measures a different volume 
and different networks utilize different installation proto-
cols that can result in incompatibility. SMAP is supporting 
studies, specifically the In Situ Sensor Testbed, described 
below, to provide a basis for normalizing these different 
methods and protocols.

Performing a site-specific calibration against a standard 
of gravimetric measurement of the 0–5 cm soil layer (and 
0–100 cm if possible) is the recommended protocol for 
calibration and normalizing an in situ network for integra-
tion into the SMAP validation data base.

1) Soil Moisture In Situ Sensor Testbed 

A testbed was established to test and calibrate various 
soil moisture probes provided by different manufacturers. 
Specifically, the SMAP Marena Oklahoma In Situ Sensor 
Testbed (MOISST) will provide answers to the following 
set of questions: (1) How do different soil moisture sen-
sors perform given the same hydrologic inputs of rainfall 
and evaporation? (2) How do different sampling intervals 
impact the soil moisture estimates, given instantaneous 
measurements versus time averaged measurements? 
(3) How do the orientations of installation influence the 
data record and effectiveness of the sensor? (4) How 
can networks which measure soil moisture by different 
fundamental methods, capacitance, frequency domain 
reflectometry (FDR), and time domain reflectometry (TDR), 
be compared to a standard of gravimetric validation? 
(5) How can the measurements from different sensors 
with different sampling scales, particularly the COSMOS 
(http://cosmos.hwr.arizona.edu) and GPS systems 
(Larson et al. 2010) of soil moisture monitoring, compare 
given the variation in scale of measurement? Answering 
these questions is important for establishing a standard 
for soil moisture measurement in situ sites across the 
globe.

The site is located in Marena, Oklahoma and managed 
by the Oklahoma State University (OSU) Range Research 
Station. The Oklahoma Mesonet MARE site is located 
400 m from the site and two NOAA CRN stations are 
located nearby. The landscape of the site is characterized 
as rangeland and pasture. OSU Department of Plant and 
Soil Science will provide additional local support.

The site consists of four separate sets of installations 
situated around Subsite A so they have radially increasing 
distance from Subsite A. Figure 66 shows the locations of 

the subsites: Subsite C is at a distance of 100 m, Subsite 
B at 200 m, Subsite D at 300 m and Mesonet MARE site 
additionally at a distance of 400 m from Subsite A.

Each subsite has a set of soil moisture sensors. Table 21 
shows which sensors are installed at which subsite, the 
number of sensors at each subsite and the depths of the 
installations at those subsites. A Passive Distributed Tem-
perature Sensor (DTS) System (Steele-Dunne et al. 2010) 
is installed between Subsites A and B. For investigation of 
the effect of the sampling interval each sensor is sampling 
with enhanced one-minute interval for five minutes every 
hour. Additionally, the vegetation water content, surface 
roughness and soil characteristics will be determined for 
the domain over the course of the experiment.

B. Soil Moisture Up-Scaling Study

Up-scaling is a key issue in utilization of in situ measure-
ments for calibration and validation. Therefore, one of the 
pre-launch cal/val objectives is to define a standard meth-
odology on how to transfer point-wise ground measure-
ments of in situ resources to the SMAP footprint scale. 
A SMAP working group focused on providing systematic 
scaling guidelines for the SMAP Cal/Val program. This 
effort has resulted in a paper “Upscaling sparse ground-
based soil moisture observations for the validation of 
coarse-resolution satellite soil moisture products” (Crow 
et al. 2012).

C. Core Validation Sites

The SMAP project chose to follow the approach used in 
previous satellite validation programs (MODIS, AMSR-E, 
and SMOS) and to establish a set of Core Validation Sites 
(CVS). The scientific objective of these sites is to provide 
very high quality in situ observations that can be used to 
estimate soil moisture, freeze/thaw, or NEE accurately 
at the spatial resolution of the L2–L4 products, while satis-
fying all the other requirements described in subsequent 

Figure 66. Geographic configuration of the SMAP MOISST and its 
subsites.
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sections. Linking the in situ observations to the SMAP 
product grid sizes is a key aspect of the CVS. Overall the 
highest priority in situ resources for SMAP Cal/Val are the 
Core Validation Sites (CVS). CVS have been an important 
component of previous efforts to use remote sensing to 
estimate soil moisture (AMSR-E [Jackson et al. 2010], 
SMOS [Jackson et al. 2012]) and other land parameters.

In particular, it was suggested that it is highly desirable 
that the soil moisture Core Validation Site design includ-
ed multiple sites that would provide a statistically reliable 
estimate; however, the use of an established alternative 
method for scaling would be considered, especially for 
sparse networks. In the case of sparse networks, if the 
basic data provided has been verified, the SMAP proj-
ect can collaborate on alternative scaling methods. The 
selected Core Validation Sites would be the focus of inten-
sive ground and aircraft field campaigns to further verify 
scaling. Extensive ancillary datasets would be established 
to support algorithm development and implementation at 
multiple scales and water, energy, and carbon models and 
other synergistic science. 

1) General Requirements for CVS

The following minimum criteria are desired for a CVS of 
any of the data products:

•	 Accessible to researchers

•	 Has existing infrastructure including access and 
utilities

•	 Heritage of scientific studies to build from

Configuration

Table 21. Soil moisture sensor types, subsites where they are installed, number of sensors per subsite, and depths of installations at those subsites.

Stevens Water Hydra Probes

Delta-T Theta Probes

Decagon EC-TM probes

Sentek EnviroSMART

Acclima Sensor

Campbell CS 229-L heat dissipation sensors (OK Mesonet)

Campbell CS615/CS616 TDRs

Passive Distributed Temperature Sensor (DTS) System

GPS reflectometers

COSMOS system

Climate Reference Network Station

Traditional TDR System

ASSH System (Mongolia)

Sites

2.5, 5, 10, 20, 50, 100

5, 10, 20, 50, 100

5, 10, 20, 50, 100

10 , 20, 50, 100

5, 10, 20, 50, 100

5, 10, 20, 50, 100

5, 10, 20, 50, 100

10 cm

2.5, 5

5, 10, 50, 100

No.

6

5

5

4

5

5

5

1

1

1

6

4

A,B,C,D

A,B,C,D

A,B,C,D

A,B,C,D

A,B,C,D

A,B,C,D

A,B,C,D

A-B

A, C, D

A

B, D

A

A

Depths (cm)

•	 An area that is homogeneous or has a uniform mix-
ture of land covers at the product scale

•	 Represents an extensive or important biome

•	 Complements the overall set of sites

•	 Operational by 2013 with infrastructure support 
through 2017

•	 Formal arrangement with the SMAP project

In situ methods provide point observations and the 
volume contributing to each point is different from satellite 
grid products value (depending on the product). A variety 
of techniques can be used to establish the scaling of 
the points and grids. Each participating CVS will have 
associated a description of the methods that will be used 
to scale its in situ measurements up to a SMAP grid cell 
size. 

2) Specific Requirements for a Soil Moisture CVS

Explicit requirements set out for soil moisture CVS are the 
following:

•	 Depths: Minimum 0–5 cm, desirable 0–5 and 
0–100 cm

•	 Sensors that have been calibrated to volumetric 
soil moisture using the thermo-gravimetric method 
(verification)

•	 A dense network of sensors (Minimum 6, desired 15) 
over a SMAP grid cell
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       —  Acceptable: Scaling using an established  
             alternative technique

       —  Desirable: Three nested levels of extent (3, 9,  
           and 36 km)

•	 Supporting studies to establish the representative-
ness of the network using more intensive sampling

•	 Data available in 1 to 4 weeks to the validation team

•	 Supporting information on soils, vegetation, and 
meteorology

Sites distributed geographically and representative of a 
range of climate and vegetation types are desirable. Data 
access, latency, and verification of calibration and scaling 
must be satisfied if a site is to be a CVS. Networks that 
cannot satisfy all of the requirements will be supplemental 
resources for validation.

Although it is highly desirable that the soil moisture CVS 
design includes multiple sites that provide a statistically 
reliable estimate, the use of an established alternative 
method for scaling will be considered, especially for 
sparse networks.

3) Selection and Engagement of CVS

During the early Phase A of the SMAP project the existing 
in situ resources were not in the state that they alone 
could provide all the information needed to conduct 
SMAP validation. Most of the readily available resources 
were sparse and lacked an explicit scaling to SMAP grid 

cell spatial resolutions. When combined with variations 
between instruments and installations, it would have been 
difficult to conduct the analyses necessary for global 
consistency. There were a few candidate dense networks; 
however, even these would have needed to adapt to the 
spatial scales of SMAP.

Increasing the number and improving the quality of in 
situ observations available to SMAP was identified as a 
significant issue by the Cal/Val Working Group and actions 
were initiated to address these problems. One specific 
action taken was to release a Dear Colleague Letter (DCL) 
for In Situ Validation through NASA. This announcement 
solicited responses that involved no exchange of funds, 
allowed international participation, provided guidance and 
minimum requirements, and applied to all types of in situ 
observations. 

Collaboration has also been also solicited outside the 
DCL-process and in the end all participants who must 
enter into a formal agreement with the project regarding 
cooperation in the calibration and validation of the mission 
products will be recognized as SMAP Cal/Val Partners. 
CVS will be selected from Cal/Val Partners’ sites based 
on the parameters of the sites, as discussed above. Other 
sites not meeting all requirements will be referred to as 
Supplemental Validation Sites.

4) List of Potential SMAP Core Validation Sites

The current set of candidate CVS is shown in Figure 67 
and listed in Table 22. These included good geographic 
coverage and were mostly focused on soil moisture.  

Figure 67. The distribution of Cal/Val partners that are candidates for SMAP Core Validation Sites.

Barren/sparse
Snow and ice
Cropland/natural mosaic
Urban and built-up
Croplands
Wetlands permanent
Grasslands
Savannas
Savannas woody
Shrub open
Shrub closed
Forest mixed
Forest decid brdlf
Forest decid ndllf
Forest evrgr brdlf
Forest evrgr ndllf
Water

45°N

45°S

0° 135°W 90°W 45°W 0° 45°E 90°E 135°E
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D. Supplemental Validation Sites

Supplemental Validation Sites are those that do not fulfill 
all the requirements of the CVS but are nevertheless seen 

as very important for the SMAP calibration and validation 
activities. In most cases these are measurements provid-
ed by sparse networks that do not have calibration and 
scaling information. Table 23 lists the sparse networks 

Site/Network

Table 22. SMAP Cal/Val partners that are candidates for SMAP Core Validation Sites.

USDA ARS Research Watershed 
Networks

Reynolds Creek Experimental 
Watershed 

SoilSCAPE Wireless Network 

Soil moisture and freeze/thaw  
network in the Northeast 

Saskatchewan and Ontario Soil 
Moisture Networks

Agri-Food Canada In Situ Networks

Mexican Riverine Ecosystem 

Murrumbidgee Catchment Core 
Validation Site

Kuwait Desert Terrain

FMI-ARC

CCRN Networks

Twente NL and Tibetan Plateau 
Sites

Argentina Forest and Agriculture

Argentina SAOCOM Sites

Mpala Hydrological Observatory, 
Kenya

REMEDHUS

TERENO 

HOAL

Valencia

MAHASRI

AMMA

EURAC

Metolius and Burns, Oregon 

BERMS

Imnavait Watershed & Bonanza Crk

Park Falls

Fort Peck

Sky Oaks, Ivotuk, Atqusuk

Santa Rita, Walnut Gulch

Tonzi Ranch

PI Last Name

Dense

 
Dense

 
Dense

Dense

 
Dense

 
Dense

Dense

Dense

 
Dense

Dense

Dense

Dense

 
Dense

Dense

Dense

 
Dense

Dense

Dense

Dense

Dense

Dense

Dense

Tower

Tower

Tower

Tower

Tower

Tower

Tower

Tower

Location (Number)

USA (6)

 
Idaho

 
California (3)

New York

 
Canada (2)

 
Canada (3)

Mexico

Australia

 
Kuwait

Finland

Canada

Netherlands and 
Tibet (4)

Argentina

Argentina

Kenya

 
Spain

Germany

Austria

Spain

Mongolia

Niger, Benin (2)

Italy

USA, Oregon

Canada

USA, Alaska

USA, Wisconsin

USA, Montana

USA

USA, Arizona

USA

M. Cosh

 
M. Seyfried

 
M. Moghaddam

M. Temimi

 
A. Berg

 
H. McNairn

J. Ramos Hernandez

J. Walker

 
K. Al Jassar

J. Pulliainen

H. Wheatear

Z. Su

 
H. Karszenbaum

M. Thibeault

K. Caylor

 
J. Martinez-Fernandez

C. Montzka

W. Dorigo

E. Lopez-Baeza

I. Kaihotsu

T. Pellarin

C. Notarnicola

B. Law

H. Wheater

E. Euskirchen

A. Desai

T. Miers

W. Oechel

R. Scott

D. Baldocchi

Type L2/3
SM

L3
FT

L4
SM

L4
C

L1

X

 
X

 
X

X

 
X

 
X

X

X

 
X

X

X

 
X

X

X

 
X

X

X

X

X

X

X
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Site/Network

Table 23. The list of selected partners for SMAP Supplemental Validation Sites.

SMOSMANIA

SCAN/SNOTEL

CRN

GPS Interferometric Reflectometry Network

Southern Sierra Critical Zone  
Observatory

PI Last Name

Sparse

Sparse

Sparse

Sparse

Sparse

Location

France

USA

USA

Western USA

California

J. Calvet

M. Palecki

E. Small

J. Hopmans

Type L2
SM

L3
FT

L4
SM

L4
C

L1

X

X

X

X

X

X

X

X

 

X X

Figure 68. Map of several key sparse networks that will be SMAP Supplemental Validation Sites.

Group

Table 24. SMAP Cal/Val team L-band tower and aircraft-based sensors.

NASA GSFC

JPL

JPL

University of Monash, Australia

University of Julich, Germany

SAOCOM

CREST

University of Florida

Kuwait University

Tower Instruments Aircraft Instruments

Active and Passive (PALS)

Active (UAVSAR)

Active (PLIS) and Passive (PLMR)

Active (?) and Passive (PLMR)

Active

Active and Passive (ComRAD)

Passive (Julbara)

Passive

Active and Passive

Active and Passive

that will be Supplemental Validation Sites. Several of the 
key networks in the U.S. are illustrated in Figure 68. In 
addition, candidate CVS described above may be moved 
to this category pending ongoing evaluations.

Additionally, several groups have indicated that they will 
support SMAP Cal/Val with tower- and aircraft-based 
observations of brightness temperature and soil moisture. 
These collaborators are summarized in Table 24.

X
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V. Post-Launch Activities

A. Overview

In the post-launch period, the calibration and validation 
activities will address directly the measurement require-
ments for the L1-L4 data products. Each data product 
has quantifiable performance specifications to be met 
over the mission lifetime, with calibration and validation 
requirements addressed in their respective ATBDs. 

Post-launch calibration and validation activities are divided 
into four main parts following the IOC phase after launch:

•	 Release of beta (or provisional) versions of L1 and L2 
products

•	 Six-month sensor product Cal/Val phase, after which 
delivery of validated L1 products to the public archive 
will begin.

•	 Twelve-month geophysical product Cal/Val phase, af-
ter which delivery of validated L2 through L4 products 
to the public archive will begin. 

•	 Extended monitoring phase (routine science opera-
tions) lasting for the remainder of the science mission.  
During this period, additional algorithm upgrades and 
reprocessing of data products can be implement-
ed if found necessary (e.g., as a result of drifts or 
anomalies discovered during analysis of the science 
products).

Figure 69 shows the draft timeline (placeholders, and 
without commitment to dates) for the Cal/Val in the post-
launch phase (Phase E). The timeline shows the key Cal/
Val activities and relevant project schedule items. Phase E 
of the mission is divided into the IOC phase, Science Cal/
Val phase, and Routine Operations phase. This is reflect-
ed at the top of the table.  In the Cal/Val Phase there are 
two important milestones: (1) release of validated L0 and 
L1 data, and (2) release of validated L2 through L4 data.  

In situ validation sites, networks and field campaigns are 
the core of the science product cal/val in the post-launch 
phase. The table highlights the operation and occurrence 
of these. 

Coordination of post-launch Cal/Val and Science Data 
System (SDS) activities is important since the SDS 
produces the science products, provides storage and 
management of Cal/Val data, provides data analysis tools, 
and performs reprocessing and metadata generation 
of algorithm and product versions. The Level 2 require-
ments state that the cumulative mission science data 
shall be reprocessed up to three times (if necessary) to 
improve the data quality and that the final reprocessing 
shall be used to generate consistently-processed set for 
the complete mission one month after the end of prime 
(3-year) science mission. The figure shows placeholders 
for these milestones. Additionally, Figure 69 includes other 
relevant satellite missions taking place simultaneously with 
the SMAP mission. Note that in the case of Aquarius and 
SMOS that they will be extended if still operational.

Post-Launch SMAPVEX (TBC)

2014
JFMAMJJASOND

Phase E

JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND
2015 2016 2017 2018

Phase D

Launch

L1 L2–L4

Mission Phases

Mission Milestones

In-Orbit Checkout
Cal/Val Phase
Routine Observation

L1 Validation
L2–L4 Validation

Release Beta (L1–L2)
Release Validated

Core Site Commitment

Aquarius
SMOS (5-yr Extended)
SAOCOM
GCOM–W
ALOS–2

Release Product Update

Figure 69. Post-launch Cal/Val timeline.
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B. Sensor Products

1) Radiometer Brightness Temperature

The calibration approach of the SMAP radiometer requires 
that the absolute calibration is done on orbit after launch. 
The specific objectives of the radiometer post-launch 
calibration and validation activities are to:

•	 Provide any necessary tuning of pre-launch calibra-
tion, including bias removal, and set calibration-relat-
ed parameters that can only be determined on-orbit

•	 Calibrate drifts in the measured brightness  
temperature

•	 Validate instrument performance i.e. determine  
radiometer performance figures

•	 Validate brightness temperature product i.e.  
determine overall uncertainty

•	 Validate brightness temperature gridding to Earth grid

The following subsections break these objectives down to 
separable components of the radiometer operation and 
calibration. Table 25 provides an overview.

Geolocation. Standard geolocation techniques for scan-
ning instruments that have been previously developed 
and inherited from other missions (e.g., QuikSCAT, SSMI) 
are carefully documented in existing documents. These 
algorithms account for spacecraft position, pointing, and 
attitude; antenna scan angle; curvature of Earth and mea-
surement timing.

The baseline geolocation will be established based on the 
spacecraft ephemeris and the nominal scan geometry. 
The SMAP radar provides ranging and Doppler infor-
mation, which can be used to remove antenna point-
ing biases to high accuracy. The measured brightness 
temperatures will be utilized in several ways to refine the 
baseline. Flat targets, such as large open ocean regions, 
can be used to determine pitch and roll bias utilizing the 

measured brightness temperature over the full 360° scan. 
The scan cone angle can also be solved and used to ad-
just the nominal cone angle. Alignment of coastlines and 
water bodies can be used to determine the best fit of the 
two-dimensional brightness temperature image vs. known 
geography. Coastline crossings can be also be utilized 
but the scan position needs to be addressed (as opposed 
to the case of fixed beam instruments such as Aquarius). 
Finally, the radiometer geolocation can be compared 
against the SAR geolocation, which, however, needs to 
account for the latency in the processing. 

Faraday Rotation Correction. The validation of the 
Faraday rotation correction will be accomplished by 
comparing the estimated Faraday rotation with the Far-
aday rotation obtained from ionosphere electron density 
(International Reference Ionosphere [IRI] database) and 
magnetic field data (International Geomagnetic Reference 
Field [IGRF] database). The rotation angle can also be 
compared with the estimation by SMOS (Yueh 2000). This 
validation will be particularly important for calibration data 
collected over the ocean, where 3rd Stokes parameter is 
generated both by Faraday rotation and by the azimuthal 
asymmetry of ocean wave fields, although ocean-gener-
ated third Stokes parameter is expected to be less than 
1 K.

Atmospheric Correction. The effect of the atmosphere 
is expected to be very small at L-band. Nevertheless, a 
correction will be applied to the brightness temperature 
measurement. The atmospheric correction will be carried 
out by applying global temperature and humidity profiles 
(from forecast data) to a radiative transfer model of stan-
dard clear-sky case, at least over ocean. Over land, an 
application of path delay measured by other microwave 
instruments is considered to improve accuracy. 

Antenna Pattern Correction. The SMAP Brightness 
Temperature Forward Simulator will be used to calculate 
an estimate of the effect of the sidelobes on the bright-
ness temperature. The method will be validated utilizing 
known scenes.

Methodology

Table 25. SMAP Cal/Val methodologies and their roles in the L1B_TB product validation.

External Targets

Satellite Products

 
Model Products

 
Field Experiments

Data Required Importance

Grid cell averages for each overpass

TB matchups with SMOS and Aquarius

 
Antarctic, ocean, and cold space 
expected TBs

Aircraft- and ground-based radiometer 
measurements

Primary 

Primary

 
Primary

 
Secondary

Metrics

RMSE, SDEV, Drift

Relative RMSE, SDEV, Drift, spatial 
and temporal correlation

RMSE, SDEV, Drift, spatial and  
temporal correlation

Spatial and temporal variability  
of sites
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RFI and Post-Launch Calibration. For validation of 
RFI mitigation, RFI detection flags will be compared with 
known RFI sites (such as FAA radars). The SMAP bright-
ness temperature product will be compared with bright-
ness temperature products of the Aquarius and SMOS 
missions (at about 40° incidence angle) and also the RFI 
detection flags will be compared with the RFI records gen-
erated by Aquarius and SMOS. RFI mitigation can also be 
validated by comparing soil moisture retrieval quality mea-
sures to RFI detection flags; poor retrieval quality could be 
due to missed RFI.

Absolute Calibration and Drift Monitoring and Correc-
tion. After applying the corrections listed in the previous 
paragraphs, the Cal/Val activities listed in Table 10 will be 
implemented. Post-launch absolute calibration and drift 
correction of the radiometer is centered on the mea-
surements of three external targets: the “cold” cosmic 
microwave background (CMB), the “cool” ocean, and the 
“warm” Antarctica ice sheets. By applying these refer-
ence targets the absolute error and drift of the brightness 
temperature measurements is corrected to less than 0.4 K 
This requires that the radiometer is to be calibrated with 
accuracy of better than 2 K in the pre-launch phase. The 
radiometer will acquire data in high data rate mode (RFI 
detection) over the external calibration targets in order to 
calibrate all sub-channels for optimal RFI detection and 
removal.

The CMB is measured in the Cold Sky Calibration (CSC) 
maneuver. In CSC the instrument is pointed at the galactic 
pole. The maneuver will be carried out monthly or as 
required. The effect of the thermal changes during the 
maneuver will also be evaluated and accounted for. The 
absolute accuracy of the aggregate CMB and galactic 
source models are on the order of 0.1 K, the brightness 
temperature of CMB being at the 2.73 K level.

The ocean target is a bounded geographical area speci-
fied by latitude and longitude limits (an area in the South-
east Pacific has been preliminarily identified). In order to 
have an accurate value for the brightness temperature 
over the ocean target a radiative transfer model (RTM) will 
be developed (utilizing experience from Aquarius). The 
RTM will exploit buoy measurements (such as TOGA-TAO 
and Argo arrays) and regional averages based on environ-
mental reanalysis models to obtain accurate input values 
for physical temperature, wind, salinity etc. The RTM 
will account for surface roughness, atmospheric effects, 
reflections of celestial objects, etc. where applicable. The 
performance of the RTM of the target area will be con-
firmed in pre-launch. The absolute accuracy of the ocean 
target RTM is expected to be better than 0.4 K with  
better relative accuracy (for stability monitoring). How- 
ever, achieving this accuracy would mean discarding  
of data obtained during less than ideal conditions (e.g., 
high winds). The expected brightness temperature is in 

the 80–150 K range, depending mostly on the polarization 
and ocean temperature.

The Antarctica ice sheets contain areas with seasonally 
highly stable L-band brightness temperature. In particular, 
the area around the Dome-C on eastern Antarctica has 
been under study and this region has been preliminarily 
identified as a calibration target (a latitude and longi-
tude mask has been specified around Dome-C). Inten-
sive ground based studies at L-band suggest that the 
stability would be in the order of 0.1 K. The Dome-C site 
is equipped with meteorological measurements but the 
RTM from snow and ice layers needs more development 
before absolute accuracies at levels better than 1 K can 
be reliably achieved. An option to increase the absolute 
accuracy would be continuous ground-based measure-
ments of the brightness temperature, which would then 
be upscaled to footprint size. The brightness temperature 
level of the Antarctica is around 200 K.

The calibration data from the ocean and Antarctica tar-
gets will be acquired on every overpass. For Antarctica, 
this means almost every orbit. The ocean target will be 
measured a few times a day. In comparison to the CSC 
maneuver, which is expected to be carried out monthly, 
the observation frequency of the terrestrial calibrations 
targets is very high. Hence, the calibration strategy 
involves two elements: activity related to the proximity 
of CSC maneuvers and activity related to the frequent 
observations of the terrestrial calibration targets between 
CSC maneuvers.

The absolute calibration of the brightness temperature 
measurements is determined around the CSC events. 
The CSC observation together with the observations of 
the terrestrial targets (within one day of the CSC maneu-
ver [TBC]) is used to find the best fit between calibration 
parameters and the targets. In this case, the CSC value 
is fixed and the radiometer calibration parameters are 
adjusted. However, through analysis of the measurements 
of the terrestrial calibration targets it may be possible that 
also the RTM parameters of the terrestrial targets are 
adjusted to find the best fit.

Between the CSC events, the RTM parameters of the 
terrestrial calibration targets remain fixed and the RTM 
values are used to monitor the stability of the radiometer 
and detect any drifts and correct for them. It is important 
to note that when monitoring the stability of the radiome-
ter, the absolute value of the target is not essential as long 
as the changes of the target, if any, are known. Therefore, 
although the absolute accuracy of the RTM values for the 
terrestrial targets may not always meet the requirement, 
they should meet the requirement in the sense of stability.

There is a feedback from Level 2 product validation to 
Level 1 product validation. The observations over the 



SMAP HANDBOOK 135

Level 2 validation site are used to detect any systematical-
ly behaving biases which could possibly be attributed to 
the radiometer calibration parameters rather than Level 2 
retrieval algorithm parameterization.

Intersatellite calibration will also be employed if other 
L-band radiometer instruments will be available, such 
as SMOS and Aquarius. The process for utilizing these 
observations is TBD.

The process described above constitutes the calibration 
and validation activity of the brightness temperature and is 
intended 1) to ensure that the L1B_TB product meets its 
requirement, and 2) to provide the performance character-
istics of the L1B_TB product.

Gridding. The accuracy of the gridding algorithms will be 
evaluated by viewing coastlines, islands, and inland lakes. 

2) Radar Backscatter Cross-Section

The post-launch calibration objectives for the radar 
measured backscatter cross-section are to remove 
channel-to-channel, pixel-to-pixel biases and the abso-
lute bias. Another purpose of the cross-section validation 
is to show that the requirements for L1_S0_LoRes and 
L1_S0_HiRes have been met, and also to use this infor-
mation to optimize the accuracy of the final cross-section 
products. Table 26 summarizes the methodologies that 
will be utilized.

Pointing and Geolocation. In order to meet the point-
ing requirements, the antenna spin axis must be closely 
aligned with the nadir vector. It has been demonstrated, 
both by experience with SeaWinds and by modeling of 
SMAP, that the radar returns provide a highly accurate 
means of determining pointing biases on-orbit. The plan is 
therefore to observe the radar echo return as the antenna 
rotates and derive the roll/pitch biases. The S/C attitude 
control system will then be adjusted by ground command 
to null out these biases, and the biases in the “cone 
angle” about nadir can be deduced. Geolocation of radar 

data will be further confirmed using the location of known 
physical features on the ground as well as the location of 
large corner reflectors in the California desert.

Radiometric Calibration and Bias Removal. The 
post-launch external calibration of the radar receive and 
transmit operation consists of several components. It is 
expected that man-made targets are by themselves insuf-
ficient to complete the calibration. This is due to the fact 
that the pixel size is too large for corner reflectors (howev-
er, they are inexpensive and may be helpful in geolocation 
validation) and the transponder accuracy is insufficient. 
Instead, the statistical analysis of large, uniform, isotropic 
and well-characterized, stable scenes (such as Amazon) 
are applied. Additionally, cross-calibrations with other 
contemporaneously flying radars are used. These will 
include ALOS-2, Aquarius, and possibly UAVSAR mea-
surements over distributed targets and over targets where 
these comparison sensors can be calibrated with corner 
reflectors. Furthermore, calibrations based on natural 
targets have been demonstrated to be very accurate. For 
example, JPL Ku-band scatterometers removed chan-
nel-to-channel and pixel-to-pixel biases to 0.2 dB, and 
JERS-1 demonstrated that Amazon is stable to less than 
0.2 dB at L-band. The polarimetric backscatter reciprocity 
can also be utilized in the calibration. Calibration stability 
over time can be assessed using the above described 
tropical rain forest targets, as well as the ocean (after it 
has been corrected for the effects of wind speed and 
direction). The ocean presents a target that has excellent 
measurement statistics and is present at all latitudes.  

Faraday Rotation Correction. The L1B and L1C radar 
processors will estimate Faraday rotation using forecasts 
of the ionospheric total electron content (TEC) derived 
from GPS measurements and supplied by IGS.  A study 
was performed pre-launch, and it was found that about 
3% of the land surface points will not meet accuracy 
requirements if no Faraday rotation correction is applied.  
The errors in the IGS forecasts of TEC are small enough 
that applying a correction based on them will lower all 
residual Faraday rotation errors under the error budget.  

Methodology

Table 26. SMAP Cal/Val methodologies and their roles in the L1B/C_S0 product validation.

Stable Scattering 
Targets

Satellite Products

 
Geolocation by 
Shoreline Fitting

Swath Oriented 
Artifact Detection

Data Required Importance

Amazon reference area radar observa-
tions over time 

so cross-calibration with (PALSAR, 
JERS, Aquarius) over the Amazon 

Known shoreline maps vs. highest 
resolution radar map

Full-res swath image over isotropic 
targets (Amazon, Ice)

Primary

 
Primary

 
Primary

 
Primary

Metrics

SDEV, drift vs. time, channel,  
cross-track position

Minimize biases

 
Mean displacement along/cross 
track

Visible swath oriented  
discontinuities



SMAP HANDBOOK136

Validation of the Faraday rotation correction will be per-
formed by comparing the Faraday rotation angle derived 
by the SMAP Radiometer with the value derived from the 
IGS supplied TEC value.  

RFI Mitigation. During Instrument In-Orbit Checkout 
(IOC), there will be a period of time referred to as the “RFI 
Survey” where the radar transmit will be disabled, and 
the radar will run in a receive only mode for an 8-day orbit 
repeat cycle. During this time, the transmit frequency will 
be rastered continually over the entire tuned range. By so 
doing, data will be collected by sampling the RFI environ-
ment as a function of geographic position. This dataset 
will be used to select the optimum frequencies to use to 
avoid RFI. It might be necessary to implement a regular 
“frequency hopping” scheme so that the SMAP radar 
does not interfere with other terrestrial services. After 
selecting the “optimum” frequency, residual levels or RFI 
are expected to be present, and will be detected and re-
moved in ground processing. Validation of the RFI removal 
algorithm will be performed during L1 Cal/Val by com-
paring output products with the RFI mitigation algorithm 
switched on and off. With the removal algorithm switched 
off, RFI will show up as bright areas in the backscatter 
image. With the removal algorithm switched on, the RFI 
flags will show where RFI was detected and where it was 
considered correctable. 

C. Geophysical Products

This section describes the post-launch calibration and 
validation of the geophysical products, L2–L4. Note that 
the Cal/Val of L2 soil moisture products automatically cal-
ibrates and validates the L3 soil moisture products, since 
they are just compilations of L2 products.

1) Soil Moisture Passive (L2/3_SM_P)

Table 27 summarizes the methodologies that will be used 
to validate L2/3_SM_P. Each of these was described 
previously. The primary validation will be a comparison 
of retrievals at for a 36-km product with ground-based 
observations that have been verified as providing a spatial 
average of soil moisture at this scale, the CVS. However, 
other types of observations or products will contribute to 
post-launch validation. The following subsections describe 
these in more detail.

Core Validation Sites. As noted previously, the baseline 
validation (Stage 1) for the L2_SM_P soil moisture will be a 
comparison of retrievals for a 36-km product with ground-
based observations that have been verified as providing a 
spatial average of soil moisture at the same scale, referred 
to as Core Validation Sites. Many of these sites have been 
used in AMSR-E and SMOS validation (Jackson et al. 
2010; Jackson et al. 2012; Jones et al., 2007; Kimball 
et al. 2009). Some of these sites will also be the focus of 

intensive ground and aircraft field campaigns to further 
verify the accuracy of the collected data. 

The footprint-scale soil moisture estimates of Core Valida-
tion Sites will be compared against the SMAP L2_SM_P 
products to produce an RMSE assessment of the accura-
cy of the product over these sites. 

Supplemental Validation Sites. The intensive network 
validation described above can be complemented by 
sparse networks as well as by new/emerging types of 
networks included in the Supplemental Validation Sites. 
Due to the scaling issues of most of these networks, the 
data are more likely to be used as part of the statistical 
triple co-location analysis (Scipal et al. 2008; Dorigo et al. 
2010) as opposed to exact comparisons of in situ value 
and the product. 

Satellite Products. Depending upon mission timing and 
life, it is possible that both SMOS and JAXA’s GCOM-W 
will be producing global soil moisture products at the 
same time as SMAP.  Both of these products are at the 
same nominal spatial resolution as the SMAP L2_SM_P 
soil moisture and are supported by validation programs, 
which should be mature by the SMAP launch date. In ad-
dition, an Aquarius soil moisture product will be available 
at a coarser spatial resolution.

Post-launch soil moisture product comparisons with 
SMOS and GCOM-W are a very efficient means of valida-
tion over a wide range of conditions. If confidence in these 
products is high, they will provide a good resource for 
Stage 2 SMAP validation.  

Post-launch validation will consist of comparisons 
between the SMAP / SMOS / GCOM-W soil moisture 
estimates that include:

•	 Core Validation Sites

•	 Extended homogeneous regions

•	 Global maps

For the core validation sites and extended homogeneous 
regions, statistical comparisons will be conducted (Root 
Mean Square Difference, RMSD, will be used instead of 
RMSE because the alternative satellite products are not 
considered to be “ground truth”).  

Comparisons will be initiated as soon as SMAP soil 
moisture products become available; however, a sufficient 
period of record that includes multiple seasons will be 
necessary before any firm conclusions can be reached. It 
should also be noted that only dates when both satellites 
cover the same ground target at the same time will be 
useful. The overlap of the swaths will vary by satellite. The 
morning (and evening) orbits of SMAP and SMOS cross 
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Methodology

Table 27. SMAP Cal/Val methodologies and their roles in the L2/3_SM_P product validation.

Core Validation 
Sites

Supplemental 
Validation Sites

Satellite Products

 
Model Products

 
Field Experiments

Data Required Importance

Grid cell averages for each overpass

 
Spatially scaled grid cell values for 
each overpass

Orbit-based match-ups
(SMOS, GCOM-W, Aquarius)

Orbit-based match-ups
(NCEP, GEOS-5, ECMWF)

Detailed estimates for a very limited 
set of conditions

Primary 

 
Secondary:  Pending results of 
scaling analyses

Primary: Pending assessments 
and continued operation

Secondary

 
Primary

Metrics

RMSE, Bias, Correlation

 
RMSE, Bias, Correlation

 
RMSD, Bias, Correlation

 
RMSD, Bias, Correlation

 
RMSE, Bias, Correlation

(the SMOS 6 AM overpass is ascending while the SMAP 
6 AM overpass is descending). Obviously, coverage of a 
specific site by both satellites will be infrequent. 

Although data collected over the CVS will be of the great-
est value, the Supplemental Validation Sites with concur-
rent satellite observations will also be useful, especially for 
regions that are relatively homogeneous in terms of land 
cover/vegetation and soils. One example would be the 
Sahara region.

Another role for the satellite products is in providing a 
synoptic perspective. Global image comparisons will be 
used to identify regions and / or time periods where the 
soil moisture products from the different satellites diverge.

Assessments will be conducted periodically throughout 
the SMAP post-launch period to assess, monitor, and 
possibly correct bias offsets between SMAP products 
and SMOS/GCOM-W products.  In order to fully ex-
ploit SMOS/GCOM-W soil moisture products for SMAP 
validation, it will be necessary for SMAP team members 
to participate in the assessment and validation of these 
products and to secure access to the data through ESA 
and JAXA.

Model-Based Products. In the simplest case, land 
surface models (either embedded in a Numerical Weather 
Prediction (NWP) system or in off-line mode) can be used 
to generate soil moisture products at larger (basin-wide 
and continental) scales using land surface and meteoro-
logical forcing datasets that are independent of the SMAP 
remote sensing data. As in the case of satellite products, 
the resulting soil moisture fields can then be compared 
with the remotely sensed soil moisture product at vali-
dation sites (or synoptically) over diurnal and seasonal 
cycles. These model-derived soil moisture fields can also 
be used to extend comparisons to larger space and time 
domains than available from in situ observations, thus 
supporting Stage 2 validation. The spatial resolution of 

the L2_SM_P matches the typical spatial resolution of 
the NWP products. An advantage of the model-based 
products is that they produce a synoptic global product 
every day, which means that more frequent comparisons 
to SMAP and ground-based observations are possible. 

Several NWP centers (including ECMWF, NCEP, and 
NASA/GMAO) routinely produce operational or qua-
si-operational soil moisture fields at a scale comparable 
to the SMAP radiometer product that could be used in 
SMAP validation. (This is distinct from the GMAO gen-
eration of the SMAP L4_SM surface and root zone soil 
moisture product, which uses an EnKF to merge SMAP 
observations with soil moisture estimates from the NASA 
Catchment land surface model.) The NWP-derived data 
products rely on the assimilation of a vast number of 
atmospheric observations (and select land surface obser-
vations) into General Circulation Models (GCMs). Although 
there are many caveats that need to be considered in 
using these data, they are readily available and they are 
consistent with the atmospheric forcings (precipitation 
and radiation) and land use information that determine the 
spatial and temporal patterns in soil moisture fields.  

There is significant inherent uncertainty in any mod-
el-based soil moisture product since this is not one of the 
NWP primary variables. In addition, the models typically 
simulate a thicker surface soil layer than the layer that 
dominates the satellite measurement. Little effort has 
put so far into validating the soil moisture products of 
these models. Therefore, while these model products are 
useful, they must be used very carefully. As a result, they 
are considered to be a secondary resource for validating 
L2_SM_P soil moisture.

Field Experiments. Post-launch field experiments will 
play an important role in a robust validation of the L2_
SM_P data product. These experiments provide critical 
information that can be used to independently assess 
the contributions of radiometer calibration, algorithm 
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structure and parameterization, and scaling on perfor-
mance. Field experiments require numerous elements that 
include ground and aircraft resources, which involve many 
participants and associated financial support. However, 
they provide moderate-term intensive measurements of 
soil moisture and other surface characteristics at SMAP 
product scales. 

While it is desirable to acquire such information as soon 
as possible after launch, the uncertainties of the actual 
launch date, the relationship of the launch date to the 
season, and the logistics of allocating fiscal year re-
sources require that such commitments be conservative.  
Therefore, the field experiments should be scheduled 
for some time post-launch and used as part of the more 
robust validation of the SMAP products. Based on an 
October 2014 launch, one major extended post-launch 
field campaign that should include one or core validation 
sites (such as Oklahoma) is scheduled for summer 2015 
or 2016.

Combining Techniques. Recent work has extended the 
application of the “Triple Collocation” (TC) approach to  
soil moisture validation activities (Scipal et al. 2008; 
Dorigo et al. 2010). These approaches are based on 
cross-averaging three independently-acquired estimates 
of soil moisture to estimate the magnitude of random 
error in each product. One viable product-triplet is the use 
of passive-based remote sensing, active-based remote 
sensing and a model-based soil moisture product (Dorigo 
et al. 2010; Crow et al. 2010). If successfully applied, TC 
can correct model versus SMAP soil moisture compari-
sons for the impact of uncertainty in the model product. 
However, TC cannot provide viable bias information and, 
therefore, only assesses the random error contribution to 
total RMSE. Note that TC can also be applied to reduce 
the impact of sampling error when up-scaling sparse 
in situ measurements during validation against ground-
based soil moisture observations.

2) Soil Moisture Active (L2/3_SM_A)

The baseline validation will be a comparison of retrievals 
at 3 km with ground-based observations that have been 
verified as providing a spatial average of soil moisture at 
this scale. However, as indicated in Table 28, there are 
other types of observations or products will contribute 
to post-launch validation. The validation approach of the 
L2_SM_A product follows that of the L2_SM_P: the scal-
ing issue is only adjusted to the finer 3-km resolution and 
there are some issues which require different amount of 
attention due to the different observing instrument (radar 
as opposed to radiometer). The following subsections 
discuss the use of the various methodologies.

Core and Supplemental Validation Sites. The useful-
ness of soil moisture in situ networks for satellite product 
validation was discussed previously. In terms of utiliza-
tion of in situ core sites and the sparse networks the 
L2_SM_A product validation follows mostly the approach 
of the L2_SM_P product. However, the scaling process of 
the point has different parameters, since the pixel size of 
the L2_SM_A product is only 3 km. 

The footprint-scale soil moisture estimates from the Core 
and Supplemental Validation Sites will be compared with 
the radar-based soil moisture products. In this process 
the model based techniques will be used to minimize 
the upscaling errors, broaden the temporal and spatial 
domain of the validation and to provide more insight into 
the parameters of the hydrological cycle at the network 
locations. First comparisons will be made before the 
release of the beta release. The full comparison and 
evaluation will be completed by the end of Cal/Val Phase. 
The comparison between the in situ estimates and the 
product will also be used to refine the algorithm and its 
parameterization.

Methodology

Table 28. SMAP Cal/Val Methodologies and Their Roles in the L2/3_SM_A Product Validation

Core Validation 
Sites

Supplemental 
Validation Sites

Satellite Products

 
 
Model Products

 
Field Experiments

Data Required Importance

Grid Cell averages for each overpass

 
Spatially scaled grid cell values for 
each overpass

Orbit-based match-ups
(Aquarius, PALSAR-2, SAOCOM, 
GCOM-W, SMOS)

Orbit-based match-ups
(NCEP, GEOS-5, ECMWF)

Detailed estimates for a very limited 
set of conditions

Primary 

 
Secondary: Pending results of 
scaling analyses

Secondary: Pending assess-
ments and continued operation

 
Secondary

 
Primary

Metrics

RMSE, Bias, Correlation

 
RMSE, Bias, Correlation

 
RMSD, Bias, Correlation

 
 
RMSD, Bias, Correlation

 
RMSE, Bias, Correlation
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The validation metric (mean of site-specific RMSE, see 
Reichle et al. 2010) is determined separately for sparse 
networks and core sites due to their different upscaling 
properties.

The land surface data assimilation framework will be 
utilized for retrieving additional performance metrics (inno-
vation statistics) for the soil moisture product and also for 
the exercise where the in situ soil moisture observations 
are substituted for ground-based measurements of rain 
rate, which enables the utilization of rain gauge networks 
with large coverage.

Satellite and Model Products. The utility of other 
satellite products for the validation of a SMAP product 
was described in a previous section. Radar cross-section 
measured by ALOS PALSAR (or ALOS-2) and SAOCOM 
may be obtained to test the algorithms. The resolutions 
of these radars are very high, which can be utilized in the 
validation of the mitigation of pixel heterogeneity effects. 
However, care must be taken regarding the various 
polarimetric modes and incidence angles of PALSAR and 
SAOCOM. Assessments will be conducted to estimate, 
monitor, and correct bias offsets between SMAP products 
and ALOS-2 and SAOCOM products over the validation 
sites. 

The first tests against SAOCOM soil moisture products 
will be performed by the end of Cal/Val Phase, and the 
monitoring will continue as long as these products are 
available. They are not a priority for the beta release. 

Efforts are underway to develop model-based products.

Field Experiments. As in the case of L2_SM_P, the field 
experiments provide critical information that can be used 
to independently assess the contributions of radar calibra-
tion, algorithm structure and parameterization, and scaling 
on performance for the L2_SM_A product validation.  
They provide moderate-term intensive measurements 
of soil moisture and other surface characteristics at L2_
SM_A pixel scales. However, due to the relatively small 
pixel size of the L2_SM_A product the significance of the 
airborne field experiments in terms of scaling properties 
of a pixel is not as disparate as in the case of L2_SM_P 
(36-km pixel).

Post-Launch SMAPVEX is planned to include airborne ra-
dar observations. While Post-Launch SMAPVEX is sched-
uled as soon as possible after launch, the uncertainties of 
the actual date, the relationship to the season, and other 
logistics require that time-wise commitments for utilization 
of the campaign data be conservative. Therefore, Post-
Launch SMAPVEX and other potential field experiments 
shall be used as part of the more robust validation of 
the SMAP products. Post-Launch SMAPVEX and other 

post-launch field campaigns are discussed more in a later 
section. The analysis will focus on matching up airborne 
observation with satellite products and to produce RMSE 
on a product scale, and also regarding variability within 
the product footprint.

The field experiment data will be processed and analyzed 
for the final validation report. The beta release will not 
include results from the field experiments not only due to 
the processing time but also due to the timing of the cam-
paign, which cannot be guaranteed to take place within 
three months after completion of the IOC.

Combining Different Validation Sources. Each above-
mentioned validation component produces a separate 
quantified validation result. The primary, and most empha-
sized, value is given by the core sites, which is comple-
mented by the result from the sparse networks to add 
coverage and diversity of validation conditions. The field 
campaign results will be used to augment this value by 
giving additional insight to the breakdown of error sources 
in in situ measurements and scaling process. 

The role of other satellite products is to establish the 
product relative to these products and will not directly add 
to the validity of the product. Additionally, the land surface 
data assimilation framework will be used to obtain innova-
tion statistics as an additional performance metric.

The beta release will include only assessment based on 
selection of core sites and sparse networks. The validation 
release will include input from all validation sources.

3) Soil Moisture Active/Passive (L2/3_SM_AP)

The baseline validation will be a comparison of retrievals 
at 9 km with ground-based observations that have been 
verified as providing a spatial average of soil moisture at 
this scale. However, as shown in Table 29, other types 
of observations or products will contribute to the post-
launch validation. The validation approach of the L2_SM_
AP product takes into account the validation efforts of 
both L2_SM_P and L2_SM_A, as L2_SM_AP combines 
both radiometer and radar measurements for retrieval. 
The following subsections discuss use of long-term mea-
surement networks, field experiments, utilization of other 
satellite products, and hydrological modeling.

Core and Supplemental Validation Sites. The utility of 
soil moisture in situ networks for satellite product valida-
tion was described in a previous section. The utilization 
of in situ dense sampling sites and sparse networks for 
the L2_SM_AP product validation mostly follows the 
approach of the L2_SM_P product. However, the scaling 
process of the point measurements has different parame-
ters, since the pixel size of the L2_SM_AP product is only 
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9 km and the pixel is formed by a combination of 36-km 
radiometer pixels and 3-km radar pixels.

The footprint-scale soil moisture estimates from the Core 
and Supplemental Validation Sites will be compared 
with the radiometer-based soil moisture products. In 
this process, the model-based techniques will be used 
to minimize the upscaling errors, broaden the temporal 
and spatial domain of the validation, and to provide more 
insight into the parameters of the hydrological cycle at the 
network locations. First comparisons will be made before 
the release of the beta release. The full comparison and 
evaluation will be completed by the end of Cal/Val Phase. 
The comparison between the in situ estimates and the 
product will also be used to refine the algorithm and its 
parameterization.

The validation metric (mean of site-specific RMSE, see 
Reichle et al. 2010) is determined separately for sparse 
networks and core sites due to their different upscaling 
properties.

The land surface data assimilation framework will be 
utilized for retrieving additional performance metrics (inno-
vation statistics) for the soil moisture product and also for 
the exercise where the in situ soil moisture observations 
are substituted for ground-based measurements of rain 
rate, which enables the utilization of rain gauge networks 
with large coverage. 

Satellite and Model-Based Products. The testing of 
the L2_SM_AP directly with other satellite data products 
is limited due to the unique nature of combining L-band 
radiometer and L-band radar with synthetic aperture pro-
cessing. However, it may be possible to carry out some 
algorithm level tests by combining data from L-band 
radiometers (such as SMOS) and L-band radar (such as 
ALOS-2) flying on different platforms. The direct com-
parisons of soil moisture products on a 9-km scale can 

be carried out against SAOCOM by aggregating its soil 
moisture products.

The first tests against these other satellite products will be 
performed by the end of Cal/Val Phase, and the monitor-
ing will continue as long as these products are available. 
They are not a priority for the beta release.  

Efforts are underway to develop model-based products.

Field Experiments. As in the case of L2_SM_P, the field 
experiments provide critical information that can be used 
to independently assess the contributions of radar and 
radiometer calibration, algorithm structure and parame-
terization, and scaling on performance for the L2_SM_AP 
product validation. They provide moderate-term inten-
sive measurements of soil moisture and other surface 
characteristics at L2_SM_AP pixel scales. The collection 
of field experiment data is combined for all soil moisture 
algorithms to campaigns occurring as has been laid out 
for L2_SM_P.  

Post-Launch SMAPVEX is planned to include combined 
airborne radar and radiometer observations. While Post-
Launch SMAPVEX is scheduled as soon as possible 
after launch, the uncertainties of the actual date, the 
relationship to the season, and other logistics require that 
time-wise commitments for utilization of the campaign 
data be conservative. Therefore, Post-Launch SMAPVEX 
and other potential field experiments shall be used as part 
of the more robust validation of the SMAP products. Post-
Launch SMAPVEX and other post-launch field campaigns 
are discussed more in a later section. The analysis will 
focus on matching up airborne observation with satellite 
products and produce RMSE on product scale and also 
regarding variability within the product footprint.

The field experiment data will be processed and analyzed 
for the final validation report. The beta release will not 

Methodology

Table 29. SMAP Cal/Val methodologies and their roles in the L2/3_SM_A/P product validation.

Core Validation 
Sites

Supplemental 
Validation Sites

Satellite Products

 
Model Products

 
Field Experiments

Data Required Importance

Grid cell averages for each overpass 
(time-continuous)

Spatially scaled grid cell values for 
each overpass (time-continuous)

Orbit-based match-ups (SMOS, 
GCOM-W, Aquarius)

Global model outputs 
(NCEP, GEOS-5, ECMWF) 

Detailed estimates for a very limited 
set of conditions

Primary 

 
Secondary: Pending results of 
scaling analyses

Secondary: Pending assess-
ments and continued operation

Secondary

 
Primary

Metrics

RMSE, Bias, Anomaly 
Correlation

RMSE, Bias, Anomaly 
Correlation

Pattern matching,  
Correlation

Correlation

 
RMSE, Bias, Correlation
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include results from the field experiments not only due to 
the processing time but also due to the timing of the cam-
paign which cannot be guaranteed to take place within 
3 months after completion of the IOC. 

Combining Different Validation Sources. Each above-
mentioned validation component produces a separate 
quantified validation result. The primary, and most empha-
sized, value is given by the Core Sites, which is comple-
mented by the result from the sparse networks to add 
coverage and diversity of validation conditions. The field 
campaign results will be used to augment this value by 
giving additional insight to the breakdown of error sources 
in in situ measurements and scaling process. 

The role of other satellite products is to establish the 
product relative to these products and will not directly add 
to the validity of the product. Additionally, the land surface 
data assimilation framework will be used to obtain innova-
tion statistics as an additional performance metric. 

The beta release will include only assessment based on 
selection of core sites and sparse networks. The valida-
tion release will include input from all validation sources.

4) Freeze/Thaw State (L3_FT_A)

The baseline validation will be a comparison of freeze/
thaw state retrievals with ground-based observations 
that have been verified as providing a spatial average 
of freeze/thaw state at this scale. However, as shown 
in Table 30, other types of observations or products will 
contribute to the post-launch validation. The following 
subsections discuss the use of long-term measurement 
networks and field experiments.

Core and Supplemental Validation Sites. Success 
criteria for the L3_FT_A product will be assessed relative 

to in situ network measurements of frozen and non-frozen 
status for northern (≥45°N) biophysical monitoring stations 
within the major land cover and climate regimes. 

In situ frozen/non-frozen status will be determined as a 
composite ensemble of vegetation, soil and air tempera-
ture measurements, and will be compared to coincident 
footprint scale L3 freeze/thaw measurements. The fulfill-
ment of the requirements will be assessed by comparing 
SMAP freeze/thaw classification results and in situ frozen 
or non-frozen status.

The full comparison and evaluation of the L3 freeze/
thaw product accuracy will be completed by the end of 
the mission Cal/Val Phase. The comparison between 
the in situ temperature observations and the freeze/thaw 
product will also be used to refine the classification algo-
rithm and its parameterization.

5) Satellite and Model-Based Products 

Field Experiments. Additional L3 freeze/thaw validation 
activities may involve field campaigns using relatively 
fine scale airborne (e.g., PALS) and tower-based L-band 
remote sensing in conjunction with detailed biophysi-
cal measurements from in situ station networks (e.g., 
FLUXNET). Particular focus areas for these activities 
include examining sub-grid scale spatial heterogeneity 
in radar backscatter and freeze/thaw characteristics 
within the SMAP footprint; verifying spatial and temporal 
stability in L-band radar backscatter for reference frozen 
and non-frozen conditions; verifying linkages between 
L3 freeze/thaw dynamics, vegetation productivity and 
seasonal patterns in land-atmosphere CO2 exchange. 
The results of these validation activities may then be used 
to refine pre-launch algorithms and ancillary datasets to 
improve L3 freeze/thaw product accuracy. 

Table 30. SMAP Cal/Val methodologies and their roles in the L3_FT product validation.

Methodology

Core Validation 
Sites

Supplemental 
Validation Sites

Satellite Products 
 
 
Model Products

 
 
 
Field Experiments

Data Required Importance

Grid cell averages for  
each overpass 

Spatially scaled grid cell  
values for each overpass

PALSAR-2, ASCAT, 
SMOS, AMSR-E

Primary 

 
Primary: Pending results  
of scaling analyses

Secondary: Pending 
assessments and  
continued operation 
Secondary

 
 
 
Secondary

Metrics

F/T flag agreement (%); false hits/omission 
(%); primary freeze/melt onset bias (days)

F/T flag agreement (%); false hits/omission 
(%); primary freeze/melt onset bias (days)

F/T flag agreement (%); false hits/omission 
(%); primary freeze/melt onset bias (days) 
 
F/T flag agreement (%); false hits/omission 
(%); primary freeze/melt onset bias (days); 
correlation, bias, and RMSE of fractional 
frozen area

F/T flag agreement (%); false hits/omission 
(%); primary freeze/melt onset bias (days)

GEOS-5

Detailed estimates for 
a very limited set of 
conditions
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Combining Different Validation Sources. Each above-
mentioned validation component produces a separate 
quantified validation result. The primary, and most empha-
sized, value is given by the Core Sites, which is comple-
mented by the result from the sparse networks to add 
coverage and diversity of validation conditions. The field 
campaign results will be used to augment this value by 
giving additional insight to the breakdown of error sources 
in in situ measurements and scaling process. 

6) Soil Moisture Data Assimilation Product (L4_SM)

The overall approach that will be used to validate L4_SM 
is summarized in Table 31. For certain applications, such 
as the initialization of soil moisture reservoirs in atmo-
spheric forecasting systems, the absolute error in the 
soil moisture estimates is not necessarily relevant (Crow 
et al. 2005). Since scaling of soil moisture data is usually 
required prior to their use in model-based applications 
(if only because of deficiencies in the modeling system), 
time-invariant biases in the moments of the L4_SM 
product become meaningless. For model applications, 
the temporal correlation of soil moisture estimates with 
independent observations is therefore a more relevant 
validation metric. By focusing on the correlation metric, 
evaluation problems stemming from the inconsistency 
between point and area-averaged quantities are, to some 
extent, ameliorated. Entekhabi et al. 2008 provides a 
detailed discussion of the relationship between RMSE and 
correlation metrics. 

Validation with In Situ Observations. Validation of the 
surface soil moisture estimates from the L4_SM product 
against in situ observations will be identical to that of 
the L2_SM_A/P surface soil moisture product, including 
validation against measurements from dedicated field 
experiments.

Methodology

Table 31. SMAP Cal/Val methodologies and their roles in the L4_SM product validation.

Core Validation 
Sites

 
Supplemental 
Validation Sites

Satellite Products

 
 
Model Products

 
 
Field Experiments

Data Required Importance

Observed grid cell averages 
(time-continuous surface and root 
zone soil moisture)

Observed values (time-continuous 
surface and root zone soil moisture)

Orbit-based match-ups for surface 
soil moisture (SMOS, ASCAT,  
Aquarius, GCOM-W)

Global modeling and data assim-
ilation systems (ECMWF, NCEP), 
surface and root zone soil moisture

Detailed estimates of surface and 
root zone soil moisture for a very 
limited set of conditions

Primary 

 
 
Primary

 
Secondary: Pending assess-
ments and continued operation

 
Primary

 

Secondary

Metrics

Anomaly correlation, 
RMSE, Bias 

 
Anomaly correlation

 
Anomaly correlation, 
RMSD, Bias

 
Anomaly correlation, 
Assimilation diagnostics, 
RMSD, Bias

Anomaly correlation, 
RMSE, Bias

The root zone soil moisture estimates of the L4_SM prod-
uct will be validated with in situ observations from Core 
and Supplemental Sites.

Land surface flux, surface temperature, and other esti-
mates from the L4_SM product will be evaluated against 
in situ observations as much as possible but will be 
considered research products. The availability of land sur-
face flux data for validation is very limited. A comparably 
large collection of such data is provided free of charge by 
FLUXNET (http://fluxdata.org).  

Validation with Data Assimilation Approaches. Relative 
to the coverage of the satellite and model soil moisture 
estimates, few in situ data are available. The validation 
of the L4_SM product based on in situ observations will 
thus be complemented with model-based validation ap-
proaches. Specifically, the soil moisture data assimilation 
system produces internal diagnostics that will be used to 
indirectly validate its output. Specifically, the statistics of 
appropriately normalized innovations will be examined.  
Moreover, we will use also use independent precipitation 
observations to evaluate the surface and root zone soil 
moisture increments that are produced by the L4_SM 
algorithm.

7) NEE Product (L4_C)

The overall approach that will be used to validate the 
L4_C product is summarized in Table 32. The statistical 
methods and domains of validity envisaged for testing the 
L4_C algorithms and for demonstrating that their perfor-
mance meets the SMAP science requirements will involve 
direct comparisons between model outputs and tower 
eddy covariance CO2 flux measurements from available 
FLUXNET tower sites representing the dominant global 
biome types (Baldocchi 2008). Similar protocols have 
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Methodology

Table 32. SMAP Cal/Val methodologies and their roles in the L4_C product validation.

Core Validation 
Sites

Contributing  
Validation Sites

Satellite Products

 
Model Products

 
Field Experiments

Data Required Importance

Observed grid cell averages 
(time-continuous)

Observed values (time-continuous)

 
Orbit-based match-ups
(SMOS, ALOS-2…)

Site and global modeling systems, 
model inversions (CarbonTracker)

Detailed estimates for a very limited 
set of conditions

Primary 

 
Primary

 
Secondary: Pending continued 
operation

Primary

 
Secondary

Metrics

Correlation, RMSE, Bias 

 
Correlation

 
Anomaly correlation, 
RMSD, Bias

Sensitivity diagnostics, 
correlation, RMSD, Bias

Correlation, RMSE, Bias

been successfully implemented for validating the MODIS 
MOD17 GPP products (Heinsch et al. 2006; Running 
et al. 1999; Baldocchi et al. 2001; Turner et al. 2006). The 
L4_C performance and error budgets will also be deter-
mined through model perturbation and sensitivity analyses 
spanning the range of observed northern environmental 
conditions and using model input accuracy information. 
If the L4_C algorithms are implemented within the GMAO 
assimilation framework, this will enable robust error track-
ing and quantification of the value of SMAP inputs relative 
to L4_C calculations derived solely from unconstrained 
model reanalysis inputs. The model reanalysis framework 
will also enable L4_C products to be generated well 
before initiation of the SMAP data stream and will provide 
a standard from which improved model calculations using 
SMAP derived inputs can be assessed. 

L4_C model parameters and initial SOC pool sizes will be 
determined prior to launch through model simulations and 
sensitivity studies using GMAO LIS assimilation-based 
soil moisture and temperature inputs and MODIS GPP 
inputs over the observed range of Northern Hemisphere 
(≥45 °N) variability. These estimates will be refined post-
launch following initiation of the SMAP data stream and 
associated production of the input GMAO L4_SM fields. 
If the L4_C algorithms are implemented within the GMAO 
assimilation framework, the value of SMAP inputs will be 
quantified relative to L4_C NEE calculations derived solely 
from unconstrained model reanalysis inputs. 

The accuracy of the L4_C outputs, including NEE and 
component carbon fluxes for GPP and Rtot will be also 
be established in relation to in situ CO2 eddy flux mea-
surements and associated carbon budgets from available 
tower network observations (e.g., FLUXNET) within re-
gionally dominant vegetation classes following established 
protocols (e.g., Heinsch et al. 2006; Kimball et al. 2009). 

The fulfillment of the NEE requirement will be assessed by 
comparing SMAP L4_C NEE output with FLUXNET NEE 
estimates.

D. Dedicated Post-Launch Field Campaigns 

The purpose of the post-launch field campaigns is to 
provide critical information needed for the validation of 
the products. Each product identified a strategy for the 
validation in the preceding sections and whether field 
campaigns are required to carry out this strategy. This 
section presents a summary of coordinated efforts which 
answer these needs of each product. 

Field experiments typically require considerable coordina-
tion between different groups, such as the project team, 
SDT working groups, government agencies, research 
institutions and universities. This imposes relatively long 
lead time for the planning of campaigns and may affect 
the timing of the campaign. At the same time, the field 
campaigns need to be concluded so that the collected 
data can be used in the calibration and validation of the 
data products in a constructive way. Moreover, there is 
also optimum seasonal timing to carry out soil moisture 
and freeze/thaw state field campaigns.

A field campaign dedicated to calibration and validation of 
SMAP soil moisture products is planned to be carried out 
in North America sometime after the completion of IOC, 
depending on the launch date. 

Considering the launch date of early November 2014 
(which would mean the end of IOC in early February 
2015), the campaign could be carried out in the May to 
October timeframe in 2015 or 2016 to coincide with a 
favorable season for soil moisture validation. The location 
of the campaign is to be determined but it will be carried 
out over one or more of the soil moisture core validation 
sites in North America.
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The airborne instrumentation will include at least an 
airborne L-band radar and radiometer; possibly PALS 
and UAVSAR. Post-launch field campaigns will require 
the rapid mapping of spatial domains on the scale of the 
SMAP products (up to 36 km) concurrent with satellite 
overpasses. In general, this will require coverage within 
a time window of 1 to 3 hours in order to minimize the 
effects of naturally occurring geophysical changes. In ad-
dition, several geographic domains will be required. These 
requirements make it critical that the airborne simulator 
be an efficient mapping instrument installed on an aircraft 
platform with higher speed and possibly altitude capabil-
ities than have been available in pre-launch campaigns. 
Planning for this campaign will have to be coordinated 
with AirMOSS and possibly other concurrent projects, 
which utilize these airborne resources as well. Alternative 
resources should be identified for potential risk mitigation.

The aim of the campaign is to capture a range of soil 
moisture and vegetation conditions and this is accounted 
for in the timing and planning of the location of the cam-
paign. One potential design is shown in Figure 70.

Figure 70. Example of a possible Post-Launch SMAPVEX design.

The in situ sampling needs to account for the different 
sensitivities of the radiometer and radar algorithms on 
different surface and vegetation components. Since the 
radar is more sensitive to these parameters, the require-
ments of the radar-based algorithms are driving the 
design. 

E. Satellite Data 

1) SMOS

ESA provides data from missions such as SMOS through 
an ongoing proposal process. The SMAP project has 
subscribed for the Level 1C product over land (L-band 
brightness temperature on Earth grid) and Level 2 soil 
moisture product with necessary ancillary data products 
through this process. The data is utilized to support algo-

rithm pre-launch development, calibration and validation 
and preparation to post-launch calibration and validation 
activities.

2) Aquarius

Data from Aquarius is publically available through NASA’s 
DAACs.

3) GCOM-W

JAXA has provided data from its missions to NASA in 
the past. At the present, there are ongoing discussions 
between NASA and JAXA that are specifically related to 
GCOM-W that include the AMSR-2 instrument. If these 
are not formalized by the time of the GCOM-W launch, 
the SMAP project will attempt to establish scientific col-
laboration directly in order to acquire soil moisture prod-
ucts. It is also possible that the current NASA AMSR-E 
program algorithms may be adapted for GCOM-W to 
continue this data stream.

4) SAOCOM

SAOCOM will provide data to groups based upon a pro-
posal process. CONAE released a pre-launch announce-
ment of opportunity that the SMAP project responded to. 
When the post-launch announcement of opportunity is 
released, the SMAP project will submit a proposal for the 
acquisition of data to support Cal/Val.

5) ASCAT

EUMETSAT Advanced Scatterometer (ASCAT) provides 
soil moisture index product based on C-band radar mea-
surements. The data is available through the data portal 
of EUMETSAT.

6) ALOS-2 PALSAR-2 

PALSAR-2 will provide data to groups based upon a 
proposal process. JAXA released a pre-launch announce-
ment of opportunity that SMAP team members respond-
ed to for the acquisition of data to support Cal/Val.
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8. The NASA Soil Moisture Active Passive (SMAP)  
Applications Program

I. Introduction

The purpose of this chapter is

•	 To provide the scope and activities of the SMAP 
Applications Program; and 

•	 To offer guidance to other missions initiating pre-
launch applications programs.

The document is organized to provide an introductory 
SMAP mission and science overview in the context of 
SMAP applications (Sections II and III), followed by a 
SMAP Applications Program overview (Section IV). Pre-
launch activities and post-launch plans are summarized in 
Sections V and VI. The document concludes with a sum-
mary of the deliverables and timeline for SMAP Applica-
tions Program activities in relation to other SMAP mission 
milestones (Section VII).  

A. Applications Program Scope and Objectives

The SMAP Applications Program was initiated in 2007, 
seven years before the scheduled launch of SMAP in late  
2014. The overall goal of the SMAP Applications Program 
is to engage SMAP end users and build broad support for 
SMAP applications through a transparent and inclusive 
process. The sub-goals of the program are to:

•	 Develop a community of users and decision makers 
that understand SMAP capabilities and are interested 
in using SMAP products in their applications (SMAP 
Community of Practice);

•	 Reach out to users that are unfamiliar with SMAP ca-
pabilities but have the potential to benefit from SMAP 
products in their applications (SMAP Community of 
Potential);

•	 Provide information about SMAP applications to the 
broad science community to build support for SMAP 
applications (SMAP Community of Support);

•	 Facilitate feedback between SMAP user communities 
and the SMAP Mission and Science Definition Teams; 
and

•	 Identify Early Adopters who will partner with SMAP to 
optimize their use of SMAP products before launch 
as part of SMAP testbed and SMAP calibration/vali-
dation activities.

Related to the last bullet, the SMAP Early Adopter 
Program was developed in 2010 to facilitate feedback 
on SMAP products pre-launch, and accelerate the use 
of SMAP products post-launch. This program provided 

specific non-financial support to Early Adopters who 
committed to engage in pre-launch applied research with 
quantitative metrics.

B. Definitions

There are a number of terms that will be used throughout 
this chapter. SMAP — the acronym — is defined as Soil 
Moisture Active Passive. The SMAP Project is the entity 
formed to develop, launch, and operate the SMAP Obser-
vatory, and the SMAP Mission is the broad name given to 
everything related to SMAP. The SMAP Science Definition 
Team (SDT) functioned from FY2008 through FY2013 to 
advise the Project, and the SMAP Science Team (ST) will 
function starting October 1, 2013, to provide calibration/
validation support and research guidance.  

Specific definitions are also used in the description of the 
SMAP Applications Program. Applications are defined as 
innovative uses of SMAP data products in decision-mak-
ing activities for societal benefit. Applied research will pro-
vide fundamental knowledge of how SMAP data products 
can be scaled and integrated into users’ policy, business 
and management activities to improve decision-making 
efforts. Users include individuals or groups in the public 
or private sectors with national or international applica-
tions at local to global scales. Early Adopters are a subset 
of users who have a direct or clearly defined need for 
SMAP-like soil moisture or freeze/thaw data, and who are 
planning to apply their own resources (funding, personnel, 
facilities, etc.) to demonstrate the utility of SMAP data for 
their particular system or model. 

The SMAP Applications Program has hosted a number 
of workshops, tutorials, focus sessions, and town halls. 
These activities had different purposes and formats, 
resulting in a set of formal general definitions for events.  
SMAP Applications Workshops provide an update of the 
mission and its progress to the community of interest 
and are set up to exchange information about SMAP 
soil moisture and freeze/thaw state products on a broad 
scale. These workshops, which are organized annually 
or every 2 years, seek to engage a broad segment of the 
diverse SMAP user community and provide feedback to 
the SMAP mission about SMAP product applications. 
SMAP Applications Focus Sessions provide a forum for 
a well-defined user group to receive specific support 
and information on the utility of SMAP soil moisture and 
freeze/thaw state products for thematic mission objec-
tives. Focus sessions are concentrated one-day events 
focused on a thematic or disciplinary community. NASA 
Applications Tutorials are organized to discuss products 
and applications of multiple NASA decadal survey mis-
sions. Tutorials are hosted by an end user group but are 
organized and managed by the decadal mission or the 
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SMAP Applications Team. SMAP Applications Town Halls 
are gatherings organized by the SMAP Applications Team 
to inform users of SMAP products and discuss applica-
tions in an informal setting. Town Halls are associated with 
large technical meetings like the American Geophysical 
Union (AGU), American Meteorological Society (AMS), 
and the International Geosciences and Remote Sensing 
Symposium (IGARSS) annual conferences.

II. SMAP Mission and Science Overview

SMAP is one of four first-tier missions recommended in 
the Decadal Survey report of the National Research Coun-
cil’s Committee on Earth Science and Applications from 
Space (2007). The Decadal Survey was composed of six 
disciplinary panels. Five of the six panels cited applica-
tions and applied science uses for SMAP data (Table 33). 
This broad and multi-disciplinary recognition of the value 
of soil moisture and freeze/thaw data resulted in the 
placing of SMAP in the first tier of priority Earth science 
missions. 

The SMAP Science Definition Team (SDT) defined five 
major science goals for driving the mission measurement 
requirements: 1) estimate global water and energy fluxes 
at the land surface; 2)  extend weather forecast skill;  
3) develop flood and drought predictions; 4) quantify net 
carbon flux in boreal landscapes; and 5) link terrestrial 
water, energy and carbon cycle processes. With these 
science drivers, the SDT identified applications that were 
also major components of the mission (Section III). These 
driving science and the priority application goals for the 
project were the basis for a set of common measurement 
requirements, leading to the SMAP science data products 
(see Chapter 2, Table 4). 

Decadal Survey Panel

Table 33. NRC Decadal Survey Panel citation of SMAP applications.

Water Resources and Hydrological Cycle

Climate Variability and Change

Weather Science and Applications

Human Health and Security

Land Use, Ecosystems, and Biodiversity 

Cited SMAP Applications

1. Floods and Drought Forecasts

2. Available Water Resources Assessment

3. Link Terrestrial Water, Energy, and Carbon Cycles

4. Longer-Term and More Reliable Atmospheric Forecasts

5. Longer-Term and More Reliable Atmospheric Forecasts 

6. Heat Stress and Drought

7. Vector-Borne and Water-Borne Infectious Disease

8. Ecosystem Response (Variability and Change)

9. Agricultural and Ecosystem Productivity

10. Wildfires

11. Mineral Dust Production

III. SMAP Applications

The application areas directly addressed by SMAP 
measurements of soil moisture and freeze/thaw state, 
acquired globally and at high spatial and temporal resolu-
tions, are (Entekhabi et al., 2010): 

1) Weather and Climate Forecasting  
 
 
 
 
 
 
 
 
 

Soil moisture variations affect the evolution of weather 
and climate over continental regions. Initialization of nu-
merical weather prediction and seasonal climate models 
with accurate soil moisture information enhances their 
prediction skills and extends their skillful lead times.  
Information about saturated soils and inundated wetlands 
can improve estimates of terrestrial methane (CH4) emis-
sion, which is the third most important greenhouse gas 
after water vapor and carbon dioxide. Information about 
freeze and thaw is used to determine the distribution of 
frozen ground to improve the assessment of land surface  
conditions in global forecasting systems. Improved 
seasonal climate predictions will benefit climate-sensitive 
socioeconomic activities, including water management, 
agriculture, fire, flood, and drought hazards monitoring.
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2) Droughts and Wildfires  
 
 
 
 
 
 
 
 
 
 
Soil moisture strongly affects plant growth and hence  
agricultural productivity, especially during conditions 
of water shortage and drought. Currently, there is no 
global in situ network for soil moisture monitoring. Global 
estimates of soil moisture and plant water stress must be 
derived from models. These model predictions (and hence 
drought monitoring) can be greatly enhanced through 
assimilation of space-based soil moisture observations. 
Improvements in the ability to monitor and forecast agri-
cultural drought (i.e., the lack of root zone soil moisture)  
will improve famine early warning in the most food- 
insecure countries in the world. Soil moisture information 
can be used to predict wildfires, determine prescribed 
burning conditions, and estimate smoldering combus-
tion potential of organic soils. Improvements in wildfire 
information with SMAP soil moisture products can provide 
more useful and accurate data on toxic air-quality events 
and smoke white-outs (thus increasing transportation 
safety) and can inform prescribed fire activities (increasing  
efficiency).

3) Floods and Landslides   
 
 
 
 
 
 
 
 
 
 
Soil moisture is a key variable in water-related natural 
hazards, including floods and landslides. High-resolution 
observations of soil moisture and landscape freeze/thaw 
status will lead to improved flood forecasts, especially 
for intermediate to large watersheds where most flood 
damage occurs. Surface soil moisture state is key to the 
partitioning of precipitation into infiltration and runoff, and 
thus is one of the major pieces of information which drives 
flood prediction modeling. Similarly, soil moisture in moun-
tainous areas is one of the most important determinants 
of landslides. In cold land regions, the timing of thawing 
(which can be derived from satellite radar measurements) 
is coincident with the onset of seasonal snowmelt, soil 

thaw, and ice breakup on large rivers and lakes. Hydrolog-
ic forecast systems initialized with mapped high-resolution 
soil moisture and freeze/thaw fields will therefore open up 
new capabilities in operational flood forecasting and flash 
flood analysis. In turn, this will improve the response of 
government agencies and emergency managers to a full 
range of emergencies and disasters, and potentially pro-
vide insurance brokers with an up-to-date indicator of the 
likelihood of flooding, landslides, droughts, and wildfires in 
risk models related to business decisions.

4) Agricultural Productivity  
 
 
 
 
 
 
 
 
 

SMAP will provide information on water availability and 
environmental stress for estimating plant productivity and 
potential yield. The availability of direct observations of 
soil moisture status and the timing and extent of potential 
frost damage from SMAP will enable significant improve-
ments in operational crop productivity and water stress 
information systems by providing realistic soil moisture 
and freeze/thaw observations as inputs for agricultural 
prediction models. Improved models will provide crucial 
information for decision-makers managing water and 
other resources, especially in data-sparse regions.  Even 
without simulation models, farmers can also use soil 
moisture and freeze/thaw information directly as a proxy 
for field readiness (i.e., determining when the soil is dry 
enough for driving heavy machinery). At the global scale, a 
better grasp of the impact of agricultural drought on crop 
yield provides better crop supply and demand information 
for use by producers, commodity markets, traders, and 
policy makers. Forecasts of the impact of climate fluctu-
ations on crop yields with ongoing measurements of soil 
moisture and freeze/thaw will also improve management 
of agriculturally important pests and disease in developing 
countries.

5) Human Health  
 
 
 
 
 
 
 



SMAP HANDBOOK150

Improved seasonal soil moisture forecasts using SMAP 
data will directly benefit famine early warning systems, 
particularly in sub-Saharan Africa and South Asia, where 
hunger remains a major human health factor and the 
population harvests its food from rain-fed agriculture in 
highly monsoonal (seasonal) conditions. In the temperate 
and extra-tropical latitudes, freeze/thaw measurements 
from SMAP will benefit environmental risk models and ear-
ly warning systems related to the potential expansion of 
many disease vectors that are constrained by the timing 
and duration of seasonal frozen temperatures. SMAP will 
also benefit the emerging field of landscape epidemiolo-
gy (aimed at identifying and mapping vector habitats for 
human diseases such as malaria) where direct observa-
tions of soil moisture and freeze/thaw status can provide 
valuable information on vector population dynamics. Soil 
moisture in the upper layer has a direct effect on dust 
generation and air quality in desert and arid environments. 
Indirect benefits will also be realized as SMAP data will 
enable better weather forecasts that lead to improved pre-
dictions of heat stress and virus spreading rates. Better 
flood forecasts will lead to improved disaster preparation 
and response. Soil moisture provides more accurate infor-
mation on the state of saturated soils that impacts stream 
flow, nutrient loading, and turbidity; and these both lead to 
better management of urban water supply and quality.

6) National Security  
 
 
 
 
 
 
 
 
 
 
 
 
Information on surface soil moisture and freeze/thaw is 
critical to evaluating ground trafficability and mobility. The 
integration of soil moisture has been determined to be 
the single most critical parameter in state-of-the-ground 
models. Soil moisture and freeze/thaw data are also key 
to a broad array of military and civil works capabilities 
including road and bridge building, dam and levee assess-
ment/construction, and tactical decision aid design and 
development. Weather models need maps of the soil 
moisture and freeze/thaw variables to initialize forecasts 
for low-level fog, aviation density altitude, and dust gen-
eration. SMAP soil moisture and freeze/thaw information 
exceed current capability in terms of resolution, sensitivity, 
coverage, and sensing depth. Furthermore, radar obser-

vations over oceans and water bodies yield information on 
ice cover at high resolution and regardless of illumination. 

IV. SMAP Applications Program Overview

The SMAP Applications Program was initiated to integrate 
applications needs into mission planning as encouraged 
by the U. S. Congress, the National Research Council, 
and the NASA Earth Science Division. Roles and respon-
sibilities evolved as the Program developed and as needs 
became apparent. The SMAP Applications Program 
follows an Applications Plan that is updated continuously 
as the SMAP mission proceeds through its development 
and operational phases.  

A. Requirements

The SMAP Applications Program requirements are 
outlined by the NASA Authorization Act of 2005 (P.L. 
109-155, Sec. 313), National Research Council Decadal 
Survey Report on “Earth Science and Applications from 
Space,” the NASA Earth Sciences Division “Applied 
Sciences Program Strategic Plan,” and the Program-Level 
Requirements for the SMAP Project, where:

•	 NASA Authorization Act of 2005 (P.L. 109-155), 
SEC. 313 entitled “Pilot projects to encourage public 
sector applications” states “The Administrator shall 
establish a program of grants for competitively 
awarded pilot projects to explore the integrated use 
of sources of remote sensing and other geospatial 
information to address State, local, regional, and trib-
al agency needs. In Sec. 314(a), “The Administrator 
shall establish an advisory committee, consisting of 
individuals with appropriate expertise in State, local, 
regional, and tribal agencies, the university research 
community, and the remote sensing and other geo-
spatial information industries, to monitor the program 
established under section 313.”

•	 National Research Council Decadal Survey Report 
“Earth Science and Applications from Space” Chap-
ter 1 states “A fundamental challenge for the coming 
decade is to ensure that established societal needs 
help to guide scientific priorities more effectively and 
that emerging scientific knowledge is actively applied 
to obtain societal benefits. New observations and 
analyses … broadened community participation 
and improved means for dissemination and use of 
information are all required.” It further states that “...
addressing the environmental challenges will not be 
possible without increased collaboration between 
Earth scientists and researchers in other disciplines 
including the social, behavioral, and economic 
sciences and policy experts. It is necessary now to 
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build on the paradigm of Earth system science and 
strengthen its dual role of science and applications. 
This duality has always been an element of Earth 
science, but it must be leveraged more effectively 
than in the past...” 

•	 NASA Earth Sciences Division “Applied Sciences 
Program Strategic Plan” states the goal to “evaluate 
the potential for current and planned NASA missions 
to meet societal needs through applied sciences 
participation in mission science teams” and provide 
Mission applications support to “integrate applica-
tions needs into mission planning.”

•	 The SMAP Project “Program-Level Requirements 
for the SMAP Project” states in section 4.5.2 that 
“Beginning in Phase C, the SMAP Project shall 
organize and host a SMAP data product applications 
workshop annually. The workshop will share infor-
mation on the SMAP science data applications and 
define potential applications that can be supported 
within existing SMAP data requirements. Results will 

be provided to the SMAP science team and at other 
SMAP workshops and meetings.” 

B. Roles and Responsibilities

The SMAP Applications Program is a group effort with 
hundreds of partners ranging from users to NASA manag-
ers (Table 34). The SMAP Applications Team is a smaller 
group that works closely to plan and prioritize SMAP ap-
plications activities. At the time of this writing, the SMAP 
Applications Team is composed of the SMAP Applications 
Coordinators (Molly Brown and Vanessa Escobar), SMAP 
Applications Working Group Chair (Susan Moran), SMAP 
Science Definition Team Leader (Dara Entekhabi), SMAP 
Project Scientist (Simon Yueh / Eni Njoku), SMAP Deputy 
Project Scientist (Peggy O’Neill), SMAP Project Manager 
(Kent Kellogg), SMAP Science Data Systems Representa-
tive (Barry Weiss), NSIDC DAAC Deputy Manager (Aman-
da Leon), NASA Headquarters Applied Sciences Program 
Manager (Brad Doorn), and NASA Headquarters SMAP 
Program Scientist (Jared Entin).

Title

Table 34.  Leaders, partners, and roles in the SMAP Applications Program.

SMAP Applications Working Group 
(AppWG)

SMAP Applications Working Group 
(AppWG), Chair

SMAP Applications Coordinator

 
 
SMAP Applications Team

SMAP Early Adopters

SMAP Science Team (ST)

SMAP Cal/Val Working Group, Chair

SMAP Algorithms Working Group, Chair

SMAP Mission Project Manager

NASA Applied Science Program, 
Program Manager

NASA Headquarters, 
SMAP Program Scientist

NASA Flight Program, Earth Science 
Division, Assoc. Director

Person(s)*

Over 300 members and 
growing

Susan Moran

 
Molly Brown and Vanessa 
Escobar

 
See list in Section IV.B

30+ Users (Table 36)

Entekhabi et al.**

Tom Jackson

Mahta Moghaddam

Kent Kellogg

Brad Doorn

 
Jared Entin

 
Steve Volz

Role

SMAP applications development and feedback 
to the SMAP mission

Serve as liaison between SMAP SDT and SMAP 
AppWG

Develop and implement SMAP Applications 
Plan; plan and conduct workshops, focus ses-
sions, and tutorials

Plan and prioritize SMAP applications activities

Partner with SDT for applied research

Partner with Early Adopters for applied research

Coordinate with AppWG

Coordinate with AppWG

Programmatic Support

Integrate applications needs into mission  
planning

Programmatic Support

 
Coordination of Decadal Survey mission  
applications activities

*Persons associated with titles and roles are those in place at the 
time of this writing.  

**http://smap.jpl.nasa.gov/people/sciencepeople/ 
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C. Applications Plan

As stated earlier, the goal of the SMAP Applications 
Program is to engage SMAP end users and build broad 
support for SMAP applications through a transparent and 
inclusive process. Toward this goal, the SMAP mission 
formed an open-community SMAP Applications Working 
Group (AppWG) and held the 1st SMAP Applications 
Workshop on September 9–10, 2009. Presentations 
and discussions at that workshop provided the basis for 
development of the SMAP Applications Plan. The SMAP 
Applications Plan is a living document that will be updated 
continuously as the SMAP mission proceeds through its 
development and operational phases (http://smap.jpl.
nasa.gov/files/smap2/SMAP_Apps_Plan_120706.pdf).  
It outlines the goals, strategic partners, implementation 
strategy, and evaluation plan for the SMAP Applications 
Program. The plan is accompanied by annual work plans 
that are developed in collaboration with the Applications 
Team and implemented by the Applications Coordinators. 

V. Pre-Launch Activities

The pre-launch activities of the SMAP Applications 
Program are a pioneering effort that has redefined how to 
engage users during the development of a NASA mission.  
The next sections describe key elements of the SMAP 
Applications Program, including the SMAP Applications 
Working Group (AppWG), the SMAP Early Adopter Pro-
gram, interactions with other components of the SMAP 
Mission, and inter-mission collaboration.   

A. Applications Working Group (AppWG)

The open-community SMAP AppWG was initiated in 
2008. It is chaired by a Science Definition Team mem-
ber and populated through networking and invitation. 
As SMAP Applications workshops were conducted, the 
attendees were notified that they would be added to the 
AppWG. Members have also been added at their request 
through registration on the SMAP website at http://smap.
jpl.nasa.gov/science/wgroups/applicWG/. Through these 
avenues, the SMAP AppWG membership has increased 
from 0 in Jan. 2009 to 150 by Aug. 2010, to 270 by June 
2011, and to its current number of over 350 members.  

Two key roles for members of the SMAP AppWG are 
1) SMAP application development, and 2) feedback to  
the SMAP mission. The objectives of the AppWG are to: 

•	 Assess current applications benefits and require-
ments for SMAP products;

•	 Develop a community of end users that understand 
SMAP capabilities and are interested in using SMAP 
products in their application;

•	 Foster Early Adopters who can work with the SMAP 
project during the pre-launch period, particularly to 
assess impacts on their applications;

•	 Provide information about SMAP and its products to 
the broad user and science community; and

•	 Provide guidance to future NASA solicitation  
processes.

Interaction between the mission and the AppWG has 
been largely through regular emails, Applications Work-
shops, and multiple Focus Sessions and Town Halls. 
All SMAP Applications activities are documented with 
reports that are approved by the Applications Team, and 
subsequently posted on the SMAP website. The report is 
meant to engage with those who were not able to attend 
the meeting or learn about the event after it has occurred.  
Through these activities (Table 35), potential applications 
were identified (http://smap.jpl.nasa.gov/files/smap2/
Workshop_Report_100309_final.pdf); user feedback was 
provided to the mission on agriculture, climate, hydrology, 
disasters, and public health (http://smap.jpl.nasa.gov/
files/smap2/Workshop_Report_final_2.pdf; Escobar et al. 
2011); a Memorandum of Understanding (MOU) was 
drafted between NASA and USDA; SMAP Early Adopters 
were engaged and Summaries of Activities (SOAs) signed 
(section V.B); interaction between applications and the 
SMAP Cal/Val and Algorithm Development teams and 
the Distributed Active Archive Center (DAAC) was defined 
(section V.C); and joint-mission tutorials were planned 
(section V.D).

A study based on questionnaires was conducted in order 
to appropriately target the activities occurring in the years 
before launch (Brown and Escobar 2013). The objective 
of this study was to solicit data requirements, accuracy 
needs and current understanding of the SMAP mission 
from the potential user community. The study showed 
areas where soil moisture research is highly valued and 
thematically exclusive, thus bringing awareness and future 
actions to broaden the mission’s reach before launch. It 
also demonstrated that the spatio-temporal requirements 
of the community for soil moisture data will be met by 
SMAP, although they vary by application and organization.

B. Early Adopter Program

The Early Adopters are a subset of the SMAP AppWG.  
As stated earlier, the goal of the SMAP Early Adopter 
Program is to provide specific support to Early Adopters 
in pre-launch applied research to facilitate feedback on 
SMAP products pre-launch, and accelerate the use of 
SMAP products post-launch. In a written, signed Summa-
ry of Activities (SOA), Early Adopters agree to:
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Event

Table 35.  SMAP workshops, tutorials, focus sessions, and town halls.

1st Applications Workshop at 
NOAA, Sept. 2009

Town Hall at GEOSS Meeting in 
Chile, 2010
 

2nd Applications Workshop at 
USDA, October 2011

 
SMAP/USDA Focus Session at 
USDA, October 2011

 
Focus Session for Dept. of Defense, 
Tucson, 2011

Town Hall at World Water Forum in 
France, 2011

 
Focus Session at Palo Verde Nucle-
ar Power Plant, Arizona, 2012

Focus Session for Urban Modeling 
Community at ASU, Arizona, 2012

 
Town Hall at IGARSS in Munich, 
Germany, 2012

1st Joint Mission Tutorial, SMAP/
ICESat-2, at ASF, Sept. 2012

2nd Joint Mission Tutorial, SMAP/
GRACE/GPM/SWOT at USGS,  
October 2012

Applications Workshop on Health at 
CDC, January 2014

3rd Joint Mission Tutorial, SMAP/
SMOS  Tutorial at AMS Meeting, 
February 2014 

3rd Applications Workshop,  
Boulder, CO, April 2014

Focus sessions on Health and DoD, 
Spring 2014

4th Applications Workshop, 2016

Description

Defining the role of the SMAP AppWG, the 
DAAC and engaging the user community

Discussion with the Chilean Space Agency 
and University of Las Serenas

 
 
Understanding who the users are, how 
they use data, and what their data needs 
are; presentations by 7 Early Adopters

Presentations by USDA subagencies on 
research and applications related to soil 
moisture and freeze/thaw information

Discussion of SMAP applications with 
diverse DoD community 

Panel discussion about SMAP applica-
tions in hydrology 

 
Use SMAP with other environmental data-
sets for emergency decision making 

Understanding how SMAP data combine 
with urban models

 
Pre-launch analysis of the SMAP mission 
in the user community

Focus on SMAP freeze/thaw and connec-
tion with ICESat-2 altimetry

Explore collaborative opportunities for use 
of SMAP, GPM, GRACE-FO and SWOT 
data

Discussion of soil moisture data impacts 
on health and health related applications

Discuss continuity of soil moisture data 
(from SMOS to SMAP) for Operational 
Numerical Weather Prediction

Focusing on results of Early Adopter 
research

Detailed follow-up to thematic discussions 
from previous meetings

Discussion of the uses of SMAP data and 
the value of  SMAP pre-launch applica-
tions effort

Outcome

Potential applications identified*

 
Interest in joining with SMAP for 
grape/wine production in Santiago, 
Chile, participation in UAVSAR field 
campaign

Feedback from the thematic groups: 
agriculture, climate, hydrology, 
disaster, and public health*

An MOU signed between NASA and 
USDA; 3 Early Adopters SOAs

 
Engagement in the Early Adopter 
Program; 2 Early Adopter SOAs

Early engagement of internation-
al users for transboundary water 
issues

Emergency operation product devel-
opment

Joining AppWG and using SMAP-
like data in water budget/policy 
modeling

Planned a Joint Mission Tutorial 
between SMOS and SMAP

New collaborative products and 
data formatting approaches**

New collaborative products and 
data formatting approaches**

 
TBD 

 
TBD

 
 
TBD

 
TBD

 
TBD

*Full reports available at http://smap.jpl.nasa.gov/science/wgroups/applicWG/appsWkshp/

**Escobar (2013).
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•	 Engage in pre-launch research that will enable inte-
gration of SMAP data after launch in their application;

•	 Complete the project with quantitative metrics prior 
to launch;

•	 Join the SMAP Applications Team to participate in 
discussions of SMAP mission data products related 
to application needs; and

•	 Participate in the implementation of the SMAP Ap-
plications Plan by taking lead roles in SMAP appli-
cations research, meetings, workshops, and related 
activities.

In turn, the SMAP Project agrees to:

•	 Incorporate the Early Adopter contributions into the 
SMAP Applications Plan;

•	 Provide Early Adopters with simulated SMAP data 
products via the SMAP Science Data System (SDS) 
Testbed; and/or        

•	 Provide Early Adopters with planned pre-launch cal-
ibration and validation (cal/val) data from SMAP field 
campaigns, modeling, and synergistic studies.

The Early Adopter nomination and selection process 
begins with the request for nomination (RFN) made to the 
SMAP AppWG, posted on the SMAP website, and sent to 
relevant list servers. The first RFN was scheduled to follow 
the establishment of the SMAP AppWG at the 1st SMAP 
Applications Workshop. Subsequent announcements 
were made annually. After two announcements, an open 
request for nomination was instituted, accepting nomina-
tions at any time with an ad hoc review and selection by 
the Applications Team.

A “SMAP Point of Contact” associated with the SMAP 
Mission was assigned to each new Early Adopter to help 
the Early Adopters get access to and resolve issues with 
SMAP pre-launch datasets; to facilitate their research 
and receive feedback to the SMAP project on research 
metrics; and to report on Early Adopter successes, chal-
lenges and progress during SMAP SDT meetings. 

Twenty-one Early Adopters have been selected to date 
(Table 36, updates at http://smap.jpl.nasa.gov/files/
smap2/All%20EA%20table.pdf). Interaction is facilitated 
through quarterly conference calls with all Early Adopt-
ers, Project Scientists, and the SMAP SDT. The applied 
research underway by Early Adopters provides funda-
mental knowledge of how SMAP data products can be 
scaled and integrated into users’ policy, business, and 
management activities to improve decision-making efforts 
(some examples on page 159–160). A Special Collection 
of J. of Hydrometeorology is planned to report pre-launch 

applications research by Early Adopters and other SMAP 
users, to be published at the time of launch.         

C. Interaction with SMAP Cal/Val, Algorithm  
Development and the SMAP DAACs

SMAP is the first NASA mission to promote pre-launch 
applied research by making simulated products and Cal/
Val data available to users through a NASA DAAC before 
launch. This has required careful coordination between 
the SMAP Cal/Val and Algorithm Working Groups and the 
DAACs. Early in project planning, NASA Headquarters 
selected the National Snow and Ice Data Center (NSIDC) 
and the Alaska Satellite Facility (ASF) DAACs to be re-
sponsible for SMAP products and other mission data.  

In the Early Adopter Program, users are offered access 
to simulated SMAP data products generated pre-launch 
by algorithm teams and observing system simulation 
experiments conducted on the SMAP Science Data Sys-
tem (SDS) Testbed. The most reasonable way to provide 
Early Adopters with these data is through the DAAC. The 
DAAC’s mandate is to provide products after launch, yet 
for the SMAP Applications Program, the NSIDC DAAC 
is now providing data to select users before launch.   
Recently, the NASA Applied Sciences Advisory Group 
(ASAG) suggested to the NASA Earth Science Subcom-
mittee (memo dated 25 Nov. 2012) that “the responsi-
bilities of the DAACs be broadened to include providing 
access to pre-launch test data for applications research 
supporting mission development.”

To clarify the process of pre- and post-launch data 
access, a policy has been outlined by the SMAP Project 
to define data categories and data user categories for 
providing access to pre-launch and post-launch SMAP 
data via the NSIDC and ASF DAACs. A preliminary data 
access matrix is currently under review.

D. Inter-Mission Collaboration

The NRC Decadal Survey recommended 15 new space 
missions for NASA (including one joint mission with 
NOAA) and three missions for NOAA (including the one 
joint mission). A goal of the SMAP Applications Program 
is to coordinate SMAP applications with other planned 
NASA and NOAA Decadal Survey Missions  (http://www.
nap.edu/catalog.php?record_id=11820). This has been 
accomplished through SMAP Joint Mission Tutorials 
(Table 35). These discussions resulted in several new 
collaborations including a sea-ice product and a ground-
water recharge product, shared datasets, and more. 

Escobar (2013) noted that “Joint mission tutorials … 
are important to NASA as well as to end users. NASA 
provides huge amounts of remotely sensed data for Earth 
science; getting these data into the hands of those who 
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can make the most of them to address practical appli-
cations that impact society requires engagement and 
interaction with end users. To ensure that NASA maxi-
mizes the impact of its data, it is necessary for users with 
diverse perspectives to use these data. Leveraging the 

pool of information that NASA has available is important; 
working to achieve this goal before missions are launched 
increases the potential for significant use in a timely fash-
ion after data are made available.”

Example: EFFECT OF SOIL MOISTURE ON DUST 
EMISSION

Soil moisture is a dynamic variable that has a critical 
impact on the dust emission mechanism. AERONET 
aerosol optical depth (AOT870) data were correlated 
to SMOS soil moisture data collected from 2010 to 
2011 over the Cinzana dust source region (south 
Sahel). The results show that as the SMOS soil 
moisture increases, the AERONET AOT decreases up 
to a threshold moisture content above which no dust 
emission takes place. The threshold moisture content 
seems to be dependent on the climatic change over 
the dust source area. The incorporation of the soil 
moisture parameter in estimating the AOT would 
improve its estimation. 
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Example: NUMERICAL WEATHER PREDICTION

Soil moisture is a very important variable in numerical 
weather prediction systems. For drier soils, cooling 
caused by evaporation is generally limited, leading 
to increased warming and mixing in the atmospheric 
boundary layer. This directly affects near-surface air 
humidity, air pollutants, and production of clouds and 
precipitation. This figure illustrates the positive impact 
of soil moisture initial conditions on numerical weather 

predictions in 2001 in the Canadian Meteorological 
Centre (Bélair et al. 2003). The new system with 
improved soil moisture initial conditions (blue lines) 
shows decreased biases for 24–48h precipitation ac-
cumulations compared to the control (magenta lines).

Early Adopter Pre-Launch Research
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Example: GLOBAL INSURANCE and  
RE-INSURANCE

Willis Global Analytics is merging satellite data from 
NASA into existing risk identification and analysis 
systems for insurance and reinsurance, engaging 
end users to enhance decision making with SMAP 
products.

Example: NATIONAL SOIL MOISTURE  
MONITORING

The USDA National Agricultural Statistical Service 
(NASS) has launched a web-based U.S. crop vegeta-
tion condition assessment and monitoring application: 
VegScape (http://nassgeodata.gmu.edu/VegScape/). 
This web-based application has been designed to be 
a platform for accessing, visualizing, assessing and 
disseminating crop soil moisture condition derivative 
data products produced using SMAP data.

 (continued on next page)

Example: GLOBAL NEAR-REAL-TIME MONITORING 
OF SOIL MOISTURE

Operational monitoring of active and passive data 
gives information on systematic differences between 
model and satellite observations. 
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Example: CROP YIELD MODELING

Agricultural models have been developed to pre-
dict the yield of various crops at field and regional 
scales. One key input of the agricultural models is soil 
moisture. The conceptual diagram relates variation in 
regional domain-averaged soil moisture to variation in 
total crop yield. Statistical analysis would lead to the 
development of probability distributions of crop yield 
as a transformation of the probability distribution of 
domain averaged soil moisture at the beginning of the 
growing season.  

Example: NUMERICAL WEATHER PREDICTION

The NASA Short-term Prediction Research and Tran-
sition (SPoRT) Center is implementing the assimilation 
of SMOS into the Weather Research and Forecasting 
numerical weather prediction (NWP) model through 
coupling with the Land Information System to 1) in-
vestigate the impact of soil moisture observations 
on NWP models, and 2) understand the mechanics 

needed to assimilate soil moisture from the upcoming 
SMAP mission. By assimilating soil moisture observa-
tions, modelers can improve a land surface model’s 
ability to simulate evapotranspiration and latent and 
sensible heating at the surface, important inputs 
to NWP models. In addition, knowledge of the soil 
moisture helps calculate surface emissivity, improving 
the utilization of satellite observations of atmospheric 
temperature and water vapor within the data assimila-
tion system, further improving weather forecasts.

Example: AGRICULTURAL DROUGHT

Areas of the world where assimilation of AMSR-E 
surface soil moisture retrievals significantly impacts 
the sampled cross-correlation between soil moisture 
anomalies for month i and NDVI anomalies for month 
i-1. As a result, red areas correspond to regions where 
the availability of satellite-based surface soil moisture 
retrievals significantly improves our ability to fore-
cast agricultural drought using off-line water balance 
modeling. Assimilation model is the standard USDA 
Foreign Agricultural Service, 2-Layer Palmer water 
balance model and plotted values are sigma-levels of 
statistical significance for changes in cross-correlation 
relative to a model-only baseline (Bolten et al., 2013).

Example: VEHICLE MOBILITY

The DoD plans to use SMAP to improve ground vehi-
cle mobility predictions. In a scenario in which a unit 
wants to assess its river crossing capability during a 
flood event, vehicle mobility is limited by bank geome-
try, water depth and velocity, and soil conditions. Soil 
moisture is used both in the soil strength model and 
in the flood model that determines water depth and 
velocity. SMAP soil moisture estimates will provide a 
greater confidence level in these assessments. 
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Early Adopter PI and Institution

Table 36.  SMAP Early Adopters, SMAP project contacts, and applied re-
search topics. Many Early Adopters cross multiple applications (updates 

Stephane Bélair, Meteorological Research Division, Envi-
ronment Canada (EC)

 
Lars Isaksen and Patricia de Rosnay, European Centre for 
Medium-Range Weather Forecasts (ECMWF)

Xiwu Zhan, Michael Ek, John Simko, and Weizhong 
Zheng, NOAA National Centers for Environmental Predic-
tion (NCEP), NOAA National Environmental Satellite Data 
and Information Service (NOAA-NESDIS)

Michael Ek, Marouane Temimi, Xiwu Zhan, and Weizhong 
Zheng, NOAA National Centers for Environmental Predic-
tion (NCEP), NOAA National Environmental Satellite Data 
and Information Service (NOAA-NESDIS), City College of 
New York (CUNY)

John Galantowicz, Atmospheric and Environmental  
Research, Inc. (AER)

 
Jonathan Case, Clay Blankenship, and Bradley Zavodsky, 
NASA Short-term Prediction Research and Transition 
(SPoRT) Center

Lars Kaleschke, Institute of Oceanography, University of 
Hamburg, Germany

Weather and Climate Forecasting

Assimilation and impact evaluation of observations from 
the SMAP mission in Environment Canada’s Environmen-
tal Prediction Systems

Monitoring SMAP soil moisture and brightness tempera-
ture at ECMWF

Transition of NASA SMAP research products to NOAA 
operational numerical weather and seasonal climate pre-
dictions and research hydrological forecasts

 
Integration of SMAP freeze/thaw product line into the 
NOAA NCEP weather forecast models

 
 
 
Use of SMAP-derived inundation and soil moisture esti-
mates in the quantification of biogenic greenhouse gas 
emissions

Data assimilation of SMAP observations, and impact on 
weather forecasts in a coupled simulation environment

 
SMOS to SMAP migration for cryosphere and climate 
application

Applied Research Topic

Droughts and Wildfires

Jim Reardon and Gary Curcio, U. S. Forest Service 
(USFS)

Chris Funk, Amy McNally, and James Verdin, USGS and 
UC Santa Barbara

Brian Wardlow and Mark Svoboda, Center for Advanced 
Land Management Technologies (CALMIT), National 
Drought Mitigation Center (NDMC)

Kashif Rashid, UN World Food Programme

 
Uma Shankar, The University of North Carolina at Chapel 
Hill

Use of SMAP soil moisture data to assess the wildfire po-
tential of organic soils on the North Carolina Coastal Plain

Incorporating soil moisture retrievals into the FEWS Land 
Data Assimilation System (FLDAS)

Evaluation of SMAP soil moisture products for operational 
drought monitoring; potential impact on the U. S. Drought 
Monitor (USDM)

Application of a SMAP-based index for flood forecasting 
in data-poor regions

Enhancement of a bottom-up fire emissions inventory 
using Earth observations to improve air quality, land man-
agement, and public health decision support

Floods and Landslides

Rafael Ameller, StormCenter Communications, Inc.

Konstantine Georgakakos, Hydrologic Research Center

 
 
Fiona Shaw, Willis, Global Analytics

 
 
 
Steven Quiring, Texas A&M University

SMAP for enhanced decision making

Development of a strategy for the evaluation of the utility 
of SMAP products for the Global Flash Flood Guidance 
Program of the Hydrologic Research Center

A risk identification and analysis system for insurance; 
eQUIP suite of custom catastrophe models, risk rating 
tools, and risk indices for insurance and reinsurance 
purposes

Hurricane power outage prediction

 (table continued on next page)

at http://smap.jpl.nasa.gov/science/wgroups/applicWG/EarlyAdopters/).
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Agricultural Productivity

Catherine Champagne, Agriculture and Agri-Food  
Canada (AAFC)

Zhengwei Yang and Rick Mueller, USDA National Agricul-
tural Statistical Service (NASS)

Amor Ines and Stephen Zebiak, International Research 
Institute for Climate and Society (IRI), Columbia University

Jingfeng Wang, Rafael Bras, Aris Georgakakos, and  
Husayn El Sharif, Georgia Institute of Technology (GT)

 
Curt Reynolds, USDA Foreign Agricultural Service (FAS)

 
Alejandro Flores, Boise State University

 
 
Barbara S. Minsker, University of Illinois and sponsored by 
John Deere Inc.

Soil moisture monitoring in Canada

 
U. S. national cropland soil moisture monitoring using 
SMAP

SMAP for crop forecasting and food security early warning 
applications

Application of SMAP observations in modeling energy/
water/carbon cycles and their impact on weather and 
climatic predictions

Enhancing USDA’s global crop production monitoring 
system using SMAP soil moisture products

Data fusion and assimilation to improve applications of 
predictive ecohydrologic models in managed rangeland 
and forest ecosystems

Comprehensive, large-scale agriculture and hydrologic 
data synthesis

Human Health

Hosni Ghedira, Masdar Institute, UAE 

James Kitson, Andrew Walker, and Cameron Hamilton, 
Yorkshire Water, UK

 
Luigi Renzullo, Commonwealth Scientific and Industrial 
Research Organisation (CSIRO), Australia

Kyle McDonald and Don Pierson, City College of New 
York (CUNY) and CREST Institute, New York City Dept.  
of Environmental Protection

Estimating and mapping the extent of Saharan dust  
emissions using SMAP-derived soil moisture data

Using SMAP L-2 soil moisture data for added value to the 
understanding of land management practices and impact 
on water quality

Preparing the Australian Water Resources Assessment 
(AWRA) system for the assimilation of SMAP data

Application of SMAP freeze/thaw and soil moisture 
products for supporting management of New York City’s 
potable water supply

National Security

John Eylander and Susan Frankenstein, U. S. Army 
Engineer Research and Development Center (ERDC) Cold 
Regions Research and Engineering Laboratory (CRREL)

Kyle McDonald, City College of New York (CUNY)

 
 
Georg Heygster, Institute of Environmental Physics,  
University of Bremen, Germany

Gary McWilliams, Army Research Laboratory (ARL); 
George Mason, U. S. Army Engineer Research and 
Development Center (ERDC) Geotechnical and Structures 
Laboratory (GSL); Li Li, Naval Research Laboratory (NRL); 
and Andrew Jones, Colorado State University (CSU)

U. S. Army ERDC SMAP adoption for USACE civil and 
military tactical support 

 
Integration of SMAP datasets with the NRL environmen-
tal model for operational characterization of cryosphere 
processes across the north polar land–ocean domain

SMAP-Ice: use of SMAP observations for sea ice remote 
sensing

Exploitation of SMAP data for Army and Marine Corps 
mobility assessment

General

Srini Sundaram, Agrisolum Limited, UK 

Thomas Harris, Exelis Visual Information Solutions

Application of SMAP data products in Agrisolum, a Big 
Data social agritech platform

Utilization of SMAP Products in ENVI, IDL and SARscape 
— Products L1 to L4

Early Adopter PI and Institution Applied Research Topic
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•	 Product Release to the general public via the DAAC:

 — EIOC+3 months: Beta L1 products released

 — EIOC+6 months: Beta L2-L4 products re  
      leased and validated L1 products released

 — EIOC+12 months: Validated L2-L4 products  
      released

Access to preliminary data will be restricted to selected 
Early Adopters during the period before beta products are 
released to the general public via the DAAC.

C. SMAP Applications Program Evaluation

Key issues for the evaluation of the SMAP Applications 
Program include answering the following questions: What 
is the overall result of the SMAP Applications Program in 
mission planning? How can we show the “applications 
value” of the SMAP mission? Has SMAP’s engagement 
with the applications community increased the overall 
value of the mission to NASA and to the broader commu-
nity? Has the community of data users been expanded 
(in terms of theme, research type, and operational/policy 
type) due to the investment in the Applications Program?  
How has the SMAP Applications Program changed the 
type and level of engagement with potential users during 
different mission phases? Has long-term engagement 
with the mission ground system and DAAC from before- 
to after-launch maximized societal benefit of the mission?  
How has mission science benefited from having pre-
launch efforts (Early Adopter Program, pre-launch SMAP 
data access, exploratory user product development, 
etc.)?

We plan to provide lessons learned and evaluation of the 
SMAP applications program for future missions by focus-
ing on four metrics:

1. Comparison of actual SMAP application activities 
with the SMAP Level 1 guidelines;

2. SMAP Applications Working Group composition 
and activities 2 years before launch and 1 year after 
launch;

3. Results of pre-launch applications research; and

4. Use of SMAP data for applications post-launch.

VI. Post-Launch Activities

Plans are currently being made for the post-launch  
(Phase E) Applications Program. The goal will be to 
expand the depth and diversity of data uses through a 
broad and committed community of users after the satel-
lite is launched. Other primary activities will be continuing 
the Early Adopter Program and conducting the SMAP 
Applications Program Evaluation.

A. Applications Working Group

Post-launch, the SMAP Applications Team will expand 
its reach to smaller conferences and meetings to engage 
more thematic users in operational and decision-making 
environments. The SMAP Applications Program will work 
to increase the visibility and participation of policy and 
decision-making communities who use satellite data in 
pre-launch applications activities to ensure the maximum 
use of SMAP products after launch. Another goal of the 
post-launch applications program is the demonstration of 
SMAP science data products for research and applica-
tions, and liaison with the broader science and applica-
tions communities. Applied research results will be docu-
mented through articles in the peer-reviewed literature or 
in newsletters. These lessons learned will be compiled in 
one location on the SMAP website for easy access.

B. Early Adopter Program

Post-launch activities will be partly determined by the 
schedule for SMAP Cal/Val and product release. During 
the first 3 months after launch (i.e., the In-Orbit Commis-
sioning [IOC]), no science data will be available for the 
user community. The instruments may only be “on”  
intermittently during significant portions of this period.  
The availability of data for science begins at the end 
of IOC (EIOC — an acronym for convenience here) as 
follows:

•	 Cal/Val:

 — Launch to Launch+3 months: IOC

 — EIOC to EIOC+6 months: validation of L1   
      products

 — EIOC to EIOC+12 months: validation of  
      L2-L4 products
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Mission Phase

Table 37. SMAP Applications Program deliverables organized by mission phase.

Pre-Phase A

Establish Level 1 requirements and science goals and 
prepare a preliminary scientific conception of the mission

A: Preliminary Analysis

Create a preliminary design and proof of concept spec-
ifying instrument design, orbit, altitude, ground data 
systems, etc.  

  
B: Definition

Convert the preliminary plan into a technical solution.  
Requirements are defined, schedules determined, and 
teams established around hardware. SDT is chosen.
 
C/D: Design/Development

Finalize ATBD and select algorithms; finalize cal/val plan 
and conduct cal/val rehearsal; complete mission CDR  
and SIR
 

E: Operations

Operating the spacecraft and obtaining the data; pro-
cessing and delivering data to the community.

Application Program Deliverables

•	 Tables 34 and 35

•	 Applications website
•	 1st Applications Workshop
•	 Applications Working Group (AppWG)
•	 Draft Applications Plan
•	 Applications Coordinator hired

•	 Early Adopters selected
•	 2nd Applications Workshop
•	 Expanded AppWG
•	 Multiple Focus Sessions and Town Halls

•	 Final Applications Plan
•	 2nd round of Early Adopters selected
•	 Inter-Mission Tutorials
•	 3rd Applications Workshop
•	 Publication of EA applied research
•	 Plan for phase E

•	 4th Applications Workshop
•	 Report on Early Adopter Program 
•	 Report on Applications Program 

An evaluation report on the SMAP Applications Program 
will be completed after the 4th SMAP Applications Work-
shop in 2016.

VII. Deliverables, Timeline, Budget, and  
Summary

The SMAP Applications Program has tested new 
concepts, definitions, and activities that could provide 
guidance to other missions initiating pre-launch applica-
tions programs. The deliverables have been organized 
by mission phase (Table 37) with a timeline in relation to 
other mission milestones (Figure 71). The evaluation of 
the SMAP Applications Program in 2016 will provide a 
report of lessons learned.

The SMAP Applications Program was supported by a 
small budget that covered the travel and activities of the 
SMAP SDT member who served as the SMAP Appli-
cations Working Group Chair, along with salary support 
(part-time FTEs) for the SMAP Applications Coordinators 

throughout the mission lifetime. Workshops, Tutorials, 
Focus Sessions and Town Halls were hosted by users 
(donating facilities and amenities) with no registration 
fee or travel allowances. The SMAP Applications Team 
organized each event. Hosting events at users’ institutions 
minimized expenses to the SMAP Project, but also provid-
ed wide exposure to the host.

In summary, the SMAP mission is committed to the dual 
role — science and applications — defined by the NRC 
Decadal Survey. Through the SMAP Applications Program 
activities, the SMAP mission has and will continue to be 
listening, learning, and striving to be of maximum value 
to applications. The deliverables from this effort should 
enhance the applications value of not only the SMAP 
mission, but all current and upcoming NASA missions. 
The evaluation of the SMAP Applications Program 2 years 
after launch will refine the approaches and lead to a better 
understanding of how to increase the overall value of the 
mission to NASA and to the broader community.
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ASAG Applied Sciences Advisory Group

ASAR Advanced Synthetic Aperture Radar

ASCAT Advanced Scatterometer

ASF Alaska Satellite Facility

ASRIS Australian Soil Research Information 
  System 

ASSH Automatic Station for Soil Hydrology
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ATBD Algorithm Theoretical Basis Document 
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EDOS EOS Data and Operations System
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EFOV Effective Field of View
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 Information System

ERDC Engineer Research and Development  
 Center

ERS European Remote Sensing Satellite

ESA European Space Agency

ESDIS Earth Science Data and Information   
 System

ESSP Earth System Science Pathfinder

EUMETSAT European Organisation for the  
 Exploitation of Meteorological Satellites

EURAC European Academy of Bozen/Bolzano 

FAA Federal Aviation Administration

FAS Foreign Agricultural Service

FCST Forecast

FDF Flight Dynamics Facility

FDR Frequency Domain Reflectometry

FEWS Famine Early Warning Systems  
 Network

FLDAS FEWS Land Data Assimilation System

FLUXNET Global Network Monitoring CO2, 
  Water, and Energy Flux

FMI-ARC Arctic Research Center of Finnish  
 Meteorological Institute

CONUS Continental United States

COSMOS Cosmic-ray Soil Moisture Observing 
  System

COTS Commercial Off-The-Shelf

CPC Climate Prediction Center

CREST Cooperative Remote Sensing Science 
  and Technology Center

CRN Climate Reference Network

CRREL Cold Regions Research and 
 Engineering Laboratory

CSA Canadian Space Agency

CSC Cold Space Calibration;  
 Cold Sky Calibration

CSU Colorado State University

CUNY City College of New York
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  Systems

GloSim Global-Scale Simulation

GMAO Global Modeling and Assimilation   
 Office

GNSS Global Radio Navigation Satellite

GPM Global Precipitation Measurement 

GPP Gross Primary Production

GPS Global Positioning System

GRACE Gravity Recovery and Climate  
 Experiment

GRACE-FO Gravity Recovery and Climate  
 Experiment Follow-On

GRS Grassland

GSL Geotechnical and Structures  
 Laboratory

GSFC Goddard Space Flight Center

GRUMP Global Rural–Urban Mapping Project

GT Georgia Institute of Technology

GTOPO30 Global 30 Arcsecond Elevation (DEM)

 
H Horizontal

HDF5 Hierarchical Data Format Version 5

HOAL Hydrological Open Air Laboratory

Hydros Hydrosphere State

HWSD Harmonized World Soil Database 

IceSAT-2 Ice, Cloud, and land Elevation  
 Satellite-2

IF Intermediate Frequency

IFOV Instantaneous Field of View

IGARSS International Geosciences and  
 Remote Sensing Symposium

IGBP International Geosphere-Biosphere   
 Programme

IGRF International Geomagnetic Reference  
 Field

IOC In-Orbit Checkout;  
 In-Orbit Commissioning

IMS Interactive Multisensor Snow and Ice 
  Mapping System

IONEX Ionosphere Map Exchange

IPCC Intergovernmental Panel on Climate 
  Change

IR Infrared

IRI International Research Institute for   
 Climate and Society;  
 International Reference Ionosphere

ISO International Organization for  
 Standardization

ISST In Situ Sensor Testbed 

JAXA Japan Space Agency

JERS Japanese Earth Resources Satellite

JPL Jet Propulsion Laboratory 

LCLUC Land Cover and Land Use Change

LIS Land Information System

LPRM Land Parameter Retrieval Model
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LR Little River

LST Local Solar Time 

LUE Light Use Efficiency

LW Little Washita

LZPF Level Zero Processing Facility 

MAHASRI Monsoon Asian Hydro-Atmospheric 
  Scientific Research and Prediction 
 Initiative

MARE Marena, Oklahoma, Mesonet Site

MDOT Mission Data Operations Team

MEaSUREs Making Earth System Data Records for  
 Use in Research Environments

MERRA Modern-Era Retrospective Analysis for  
 Research and Applications

MGS McMurdo Station, Antarctica, antenna

MOC Mission Operations Center

MODIS Moderate Resolution Imaging  
 Spectroradiometer

MOISST Marena Oklahoma In Situ  
 Sensor Testbed

MOS Mission Operations System

MOU Memorandum of Understanding

MPD Maximum Probability of Detection

MPDI Microwave Polarization Difference   
 Index

MPRA Microwave Polarization Ratio Algorithm

MXF Mixed Forest 

N Nitrogen

NAIF Navigation and Ancillary Information   
 Facility

NASA National Aeronautics and Space  
 Administration

NASS National Agricultural Statistical 
  Service

NCEP National Centers for Environmental   
 Prediction

NDMC National Drought Mitigation Center

NDVI Normalized Difference Vegetation Index

NEDT Noise Equivalent Delta Temperature

NEE Net Ecosystem Exchange

NEN Near-Earth Network

NESDIS National Environmental Satellite Data  
 and Information Service (NOAA)

NL Netherlands

NOAA National Oceanic and Atmospheric   
 Administration

NPOESS National Polar Orbiting Operational   
 Environmental Satellite System

NPP Net Primary Production

NPP/JPSS NPOESS Preparatory Project/Joint   
 Polar Satellite System

NRC National Research Council

NRCS Natural Resources Conservation  
 Service; Normalized Radar  
 Cross-Section

NRL Naval Research Laboratory

NSD National Soil Database

NSIDC National Snow and Ice Data Center

NWP Numerical Weather Prediction 

OCO-2 Orbiting Carbon Observatory–2

OMT Orthomode Transducer

OSSE Observing System Simulation  
 Experiment

OSU Oklahoma State University 

P Passive

PALS Passive Active L-Band System;  
 Passive Active L-band Sensor

PALSAR Phased Array L-Band SAR

PAR Photosynthetically Active Radiation

PBMR Pushbroom Microwave Radiometer

PDR Preliminary Design Review
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PFT Plant Functional Types

PLIS Polarimetric L-Band Imaging  
 Scatterometer

PLMR Polarimetric L-band Multibeam  
 Radiometer

PLO-OSC Phase-Locked Oscillator

PRF Pulse Repetition Frequency

PRI Pulse Repetition Interval

PTL Product Team Lead

PWR Power 

QA Quality Assessment

QC Quality

QuikSCAT Quick Scatterometer 

RATS (Heritage Noise Source)

RBA Reflector Boom Assembly

RBE Radio Frequency Back-End

RC Reynolds Creek

RDE Radiometer Digital Electronics

Reco Ecosystem Respiration

REMEDHUS Red de Medición de la Humedad del  
 Suelo

RF Radio Frequency

RFE Radiometer Front-End

RFI Radio Frequency Interference

RFN Request for Nomination

RHS Right-Hand Side

RMS Root Mean Square

RMSD Root Mean Square Difference

RMSE Root Mean Square Error

RSS Residual Sum of Squares

RTM Radiative Transfer Model

RVI Radar Vegetation Index

RZEXC Root Zone Excess 

SAC-D Satélite de Aplicaciones Científicas–D

SAOCOM Satélite Argentino de Observatión con  
 Microondas

SAR Synthetic Aperture Radar

S/C Spacecraft

SCA Single-Channel Algorithm

SCA-H (V) Single-Channel Algorithm at H  
 Polarization (V Polarization)

SCAN Soil Climate Analysis Network (USDA)

SCH Spherical Coordinate System

SDEV Standard Deviation

SDS Science Data System

SDT Science Definition Team

s.f.u. Solar Flux Unit

SGP Southern Great Plains Experiment  

SGS Svalbard, Norway, antenna

SIA Spun Instrument Assembly

SIR System Integration Review

SIR-C Spaceborne Imaging Radar–C

SM Soil Moisture

SMAP Soil Moisture Active Passive

SMAPEx SMAP Experiments

SMAPVEX Soil Moisture Active Passive Validation  
 Experiment

SMEX Soil Moisture Experiment

SMEX02 Soil Moisture Experiment 2002

SMMR Scanning Multichannel Microwave  
 Radiometer

SMOS Soil Moisture and Ocean Salinity

SMOSMANIA Soil Moisture and Ocean Salinity  
 Meteorological Automatic Network   
 Integrated Application

SN Space Network
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SNOTEL Snow Telemetry

SNR Signal-to-Noise Ratio

SOA Summary of Activities

SOC Soil Organic Carbon

SPDM Science Processing and Data  
 Management 

SPoRT Short-term Prediction Research and   
 Transition (Center)

SRC Source

SRFEXC Surface Excess

SRMSC Science Requirement and Mission  
 Success Criteria

SRTM Shuttle Radar Topography Mission

SSM/I Special Sensor Microwave Imager

SSS Sea Surface Salinity

SST Sea Surface Temperature

ST Science Team

STT Slow-Time Thresholding

STATSGO-US State Soil Geographic Data Base for  
 the Conterminous United States 

S/W Software

SWE Snow Water Equivalent

SWOT Surface Water Ocean Topography 

TB Brightness Temperature

TBD To Be Determined

TBH Brightness Temperature in Horizontal  
 Polarization

TBV Brightness Temperature in Vertical  
 Polarization

TC Triple Collocation

TCF Terrestrial Carbon Flux

TDR Time Domain Reflectometry

TDRS Tracking and Data Relay Satellite

TDRSS Tracking and Data Relay Satellite  
 System

TEC Total Electron Content;  
 Total Electron Count

TERENO Terrestrial Environmental Observatories

TLM Telemetry

TOGA-TAO Tropical Ocean Global Atmosphere/  
 Tropical Atmosphere Ocean 

UAF University of Alaska Fairbanks

UAVSAR Uninhabited Aerial Vehicle Synthetic 
  Aperture Radar

URS User Registration System

URSA User Remote Sensing Access

USACE U. S. Army Corps of Engineers

USCRN U. S. Climate Reference Network

USDA U. S. Department of Agriculture

USDM U. S. Drought Monitor

USFS U. S. Forest Service

USGS U. S. Geological Survey 

V Vertical

VI Vegetation Index

VIIRS Visible Infrared Imaging Radiometer 
 Suite

VPD Vapor Pressure Deficit

VWC Vegetation Water Content 

WG Walnut Gulch

WGS Wallops antennas;  
 World Geodetic System

WMO World Meteorological Organization

WSC White Sands Complex 

XML Extensible Markup Language
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